
VANET Mobility Modeling Challenged by

Feedback Loops
(Invited Paper)

Harald Meyer∗, Oscar Trullols-Cruces†, Andrea Hess∗, Karin Anna Hummel∗,

Jose M. Barcelo-Ordinas†, Claudio E. Casetti‡, Gunnar Karlsson§

∗University of Vienna, Email: {harald.meyer,andrea.hess,karin.hummel}@univie.ac.at
†Universidad Politecnica de Catalunya Barcelona, Email: {trullols,joseb}@ac.upc.edu

‡Politecnico di Torino, Email: casetti@polito.it
§KTH School of Electrical Engineering, Email: gk@ee.kth.se

Abstract—VANET applications are often providing street traf-
fic information to vehicles and drivers, regarding, for instance,
traffic conditions and parking space availability. This information
influences in turn the driving behavior in real-world settings.
Mobility models used in current VANET simulations are mostly
ignoring this feedback entirely. In cases the feedback is included,
it is mainly based on ad-hoc approaches with lack of generality.

With this paper, we contribute to the investigation of such
feedback loops within VANETs by describing the levels at which
feedback loops can be introduced, i.e., on strategic, tactical, and
operational levels of mobility. We further describe how feedback
loops can be introduced in arbitrary mobility models and in
particular in elementary mobility models. We exemplify our
approach by introducing two types of feedback loops for the
Manhattan Mobility model, the Random Trip model, and the
Constrained Random Trip model. One feedback loop represents
points of interest attracting vehicles, such as free parking spaces
attracting vehicles searching for parking. The other feedback
loop focuses on repelling vehicles, such as a traffic jam.

We discuss the impacts of the feedback in terms of the mobility
metrics: vehicle density per area, number of direction changes,
and intensity of direction changes. Furthermore, we discuss
the effects in terms of information availability and delays of
transmission in an opportunistic vehicular network.

I. INTRODUCTION

Vehicular Ad-hoc Networks (VANETs) provide data dis-

semination directly between mobile vehicles. This makes the

mobility part of the system and the need to model mobility

is at the center of investigations. Besides traditional data

communication, dissemination of traffic-system information is

a major application field of VANETs and it includes parking

space management, traffic jam avoidance, rerouting of vehicles

in case of emergency, and more. Hereby, the mobility of single

vehicles is constrained by the underlying topography, by the

movement of other vehicles, and by route changes due to

received information and to driver decisions.

In related modeling approaches, a set of primitives for

movement changes is introduced in [1], such as changing

lanes, driving slower, etc. While these primitives allow con-

trol of micro-mobility behavior, other models incorporate the

adaptation of driving behavior based on the movement of

other vehicles [2]. Higher level influences to mobility behavior

are challenging new research issues in VANET research. We

focus in particular on discussing the feedback loop introduced

by information-based decision taking on vehicular movement.

In contrast to the implicit inclusion of this feedback loop,

we introduce a structured way of modeling which allows

separation of concerns of basic mobility behavior as expressed

by the mobility model used and the alteration of mobility

behavior based on a navigation policy.

In the remaining sections of the paper, we detail our

approach: In Section II, we give a summary of feedback loop

modeling approaches in recent VANET simulators accom-

plished by a discussion about the impacts experienced with

respect to data dissemination performance. After introducing

the framework for including a navigation feedback loop into

mobility modeling in Section III, we discuss feedback loops

in mobility models relevant for VANETs with a particular

focus on elementary mobility models (Section IV). We start

the discussion about the expected impacts by including such

a navigation feedback loop by introducing two common city-

area use cases for vehicular traffic management: parking space

management and congestion management (Section V). Along

with these use cases, we discuss the impacts on the elementary

mobility models Manhattan Mobility Model, Random Trip, and

Constrained Random Trip in terms of the mobility characteris-

tics: density of nodes dwelling in an area over the observation

time, number of direction changes of nodes, and intensity of

direction changes (Section VI). The results are derived from a

simulation of these scenarios and use cases assuming an out-

of-band channel for street traffic information dissemination.

Additionally, we present first results demonstrating the poten-

tial impact on data dissemination in terms of the ratio of nodes

that obtained an information item (infected or informed nodes)

and the dissemination delay. We conclude with a discussion

about the findings and an outlook on future research directions.

II. RELATED WORK

To approach the state-of-the-art in mobility modeling chal-

lenged by feedback loops, we give (i) an overview of state-of-

the-art VANET simulators and outline mobility models used as

well as feedback loops potentially supported, and (ii) discuss

how related work deals with the impact of feedback loops.

In [3], [4], currently available vehicular traffic simulators

and mobility models are surveyed and the importance of
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adapting mobility behavior to system events is emphasized,

while in [5] it is further argued that bidirectional coupling

of simulators is an important step toward realistic mobility

modeling in VANET research. However, many simulations

of vehicular ad hoc networks are still based on network

simulations processing externally generated mobility traces.

Beyond that, a number of frameworks enabling interaction

between network and mobility by coupling both types of sim-

ulators have been proposed. The framework presented in [6]

combines the SUMO1 mobility generator and OMNeT++2

network simulator by extending both with communication

modules. The mobility generated by SUMO [7] is based on

road networks (e.g., street maps supplemented by positions

and semantics of traffic signs) where movements between

source and destination roads are determined by a shortest path

algorithm or, for example, traffic counting data. TraNS (Traffic

and Network Simulation Environment) [8] incorporates an in-

terface (TraCI [1]) to realize feedback communication between

the traffic simulator (also SUMO) and a driver behavior model

implemented in the ns-2 network simulator3 to enable appli-

cations such as traffic congestion warning. Mobility patterns

caused by traffic warnings are represented by compositions of

mobility primitives, such as ’change speed’, ’change target’,

or ’stop’.

Integrated VANET simulators basically support the imple-

mentation of feedback by integrating both traffic and net-

work components. Although feedback possibilities are realized

within such frameworks, the feedback loops required are still

not fully investigated. A vehicular mobility model that incor-

porates a simple feedback loop is, for example, the STRAW

(STreet RAndom Waypoint) model [2] prompting cars to, e.g.,

slow down due to traffic control.

Apart from the goal of realistic simulation, the effects of

navigation are important for data dissemination. In particu-

lar VANET routing protocols that use navigation knowledge

to improve packet delivery in delay-tolerant networks, such

as GeoDTN+Nav [9], are potentially affected by navigation

feedback loops. In [10], the authors present an approach that

goes one step further by even taking the drivers’ reactions to

traffic information messages into account.

The impact of mobility models with respect to data dissemi-

nation metrics in vehicular ad hoc networks has been targeted,

for example, in [11] with respect to contact metrics when using

simple models as well as GIS based mobility models. A use

case similar to those presented in this work is evaluated in [12]

where the effect of route re-planning after traffic incidents on

mean travel time is investigated.

III. INTRODUCING THE NAVIGATION FEEDBACK LOOP

The change of mobility behavior due to information re-

ceived by the vehicle can be integrated in a model. Our

proposal is to make a clear separation of modeling basic

mobility and including a navigation policy as depicted in

1http://sumo.sourceforge.net/
2http://www.omnetpp.org/
3http://www.isi.edu/nsnam/ns/

Figure 1. The navigation policy depends on the VANET

application and on the considered reactions of the vehicle;

two use cases are described in Section V.

The navigation policy can be related to the purpose of a

trip, optimization of the trip (fastest route, environment-aware

route, etc.), or only related to basic changes of movement

properties, such as velocity, direction, and mobility range.

Therefore, we use the levels of abstraction introduced for

human mobility in [13]. These levels of abstraction consist of

three different levels: At the strategic level, humans decide on

the activities they would like to perform and when to depart

for an activity which leads to their daily movements, such

as going to work, shopping, or taking a walk in the park.

The tactical level considers the implementation of a strategic

decision, such as choosing a mode of transport, taking into

consideration which is the shortest or fastest path as given by

environmental factors such as obstacles and congestion. At the

operational level, the physical process of human movement is

considered, including walking or driving speed, physical size

of nodes or interaction with other traffic due to queuing or

collision avoidance.

While vehicular traffic simulators often incorporate feed-

back on the operational level, e.g., slowing down when

approaching a red traffic light, they are not as capable of

including impacts introduced on the tactical and strategic level.

On tactical level, the change of routes according to available

information is a major benefit envisioned for future VANET

applications, for instance, to change routes according to cur-

rent traffic situations by avoiding specific areas and to reach

cooperative driving decisions for minimization of overall travel

times.

On strategic level, the navigation policy may target aspects

relevant for groups of individuals in an area. Traffic informa-

tion might lead people to postpone or to change destinations

for activities. Road tolls are, for instance, aimed at changing

travel behaviors among drivers on the strategic level.

On all levels, the navigation logic (Figure 1) has to define

the concrete adaptation of the mobility model including param-

eters such as when to alter, how to alter, and how to continue

after the navigation driven movement ends. This adaptation

depends also on the characteristics of the mobility model in

use. The mobility and navigation system is modeled with a

feedback loop.

Basic mobility model

Configured mobility 
model

Navigation logic

Navigation policy 
(depending on use case) 

Fig. 1. Mobility modeling with navigation feedback loop.

IV. FEEDBACK LOOPS IN MOBILITY MODELS

In order to establish the impact of external feedback loops

on a VANET mobility model, we will initially introduce a
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coarse classification. We will refer to mobility models as

elementary, when they only capture movements of vehicles as

if they were immaterial and uncoordinated with each other. In

an elementary model setting, a node occupies a geometrical

zero-dimensional point, and the presence of another, nearby

node does not affect its behavior. We will refer to mobility

models as complex, if they also account for node interactions

with the environment they move in, whether it is other nodes,

road signs, or traffic lights. These models can thus encompass

node movement alterations such as lane changes when passing,

or slowing down at junctions.

Mobility models used in VANET research are primarily

derived from the broader scope of Mobile Ad-hoc Network

(MANET) mobility. In the latter area, the most commonly

used elementary models are (i) the Random Walk (RW), a

movement pattern where direction and speed are set according

to the output of a continuous, memoryless random process,

and (ii) the Random Waypoint (RWP), where direction and

speed are still random, but they are maintained between

two – random or zero – pause times. Movements usually

occur on a region represented by a convex domain, without

any obstacles to node mobility. Variants of these models

(such as the Probabilistic Random Walk [14], the Random

Direction [15], and the Gauss-Markov model [16]) have added

various degrees of realism to their original versions. However,

the VANET research community agrees that neither the RW

and RWP models, nor the above variants, succeed in capturing

the specific nature of vehicle movements, especially their

collective interactions. The most evident limitation of the

above models is the lack of common constraints for the

node movements (beside sharing the same region boundaries).

This is a consequence of the memoryless properties of the

direction/speed decision processes. The mobility they model

is thus limited to the strategic level. Hence, we will not discuss

them further.

A family of mobility models that, though originally de-

signed for MANETs, arguably represents a step towards actual

VANET behaviors are the so-called Group Mobility models,

where nodes, though oblivious of each other, still show some

coordination in their movements. In the Reference Point

Group Mobility [17], which is the most general of group

models, clustered nodes randomly move around a logical

cluster reference point whose motion is randomly determined.

Although a constraint binding each node to its reference point

is introduced, it still amounts to just having region boundaries

around each node. The presence of a feedback loop should

primarily affect the reference point and then affect each node

as a consequence. The reference point motion model can be

as simplistic as a RW or a RWP, or as complicated as a

fully-fledged realistic vehicular model. As the reference point

model is again a model of independent points, we can refer

our conclusions to the discussion on such models.

A constraint that is crucial for introducing a degree of

realism in node movements, and is needed by tactical-level

modeling, is the non-convexity of the domain where movement

occurs. This domain can either be quite simple, such as a cross

section where movement is only allowed inside the cross (often

referred to as a “Swiss Flag” model [18]). Alternatively, it can

be more complex and consist of a collection of segments of a

graph upon which the node is forced to move (often referred to

as a “City Section” model [19]). Such a graph can be shaped

according to a road topology and its layout can be user-defined,

map-based or random (as in the Voronoi [20] or Manhattan

Street [21] models). The latter models are also referred to as

Stochastic Mobility models in [22].

The possible effects of a feedback loop are not apparent

on the road layout but, rather, on how nodes travel on such

a layout. For example, the City Section model provides for

nodes choosing their (random) destination on the road layout

and then cruising along the shortest path to the destination,

possibly with per-segment speed limits. In such a case, a

feedback loop could be imposed on a segment speed limit by

adding a dependence on the number of nodes on that segment.

It is thus clear, based on the definitions in the previous section,

that such an addition to the City Section model would raise

it to the operational level. More advanced models such as

the Restricted Random Waypoint model (RRWP) [18] offer

additional leverage and provide even closer adherence to

operational-level modeling. In RRWP, the waypoints are set

as the vertices of the City Section graph and a probability can

be associated to determine which waypoint is chosen next,

upon reaching a vertex. The probability could be manipulated

on a node-basis to reflect external conditions, such as the use

of navigational aids that suggest less crowded, or faster routes

that do not necessarily coincide with the shortest one.

As outlined above, complex vehicular mobility models [3]

include a more detailed layout of streets as well as road factors

such as traffic control signals, interaction with other vehicles,

smooth acceleration and deceleration, or passing vehicles.

As a further classification, we recall the one introduced by

Fiore [22], which divides synthetic mobility models into five

categories: beside the already mentioned Stochastic Mobility

models, he also includes Traffic Stream models, Car Following

models, Queue models, and Behavioral models.

Traffic Stream models treat vehicles at tactical level, relating

vehicle velocity, vehicle density, and vehicle flow. These

macroscopic models do not model individual vehicle behavior

and thus have low applicability in the networking area. Queue

models treat roads as queues in which vehicles leave the queue

according to a scheduler. These schemes are good to model

large road topologies with high vehicles densities, at the cost

of some realism. Vehicle behavior in Car Following models is

modeled according to the state of the surrounding vehicles in

terms of position, speed, acceleration, etc. [23], thus adding

operational-level characteristics to the tactical level. Examples

range from the Nagel and Schreckemberg model [24] to the

Intelligent Driver Model (IDM) [25]. Some of these models

include lane changing schemes and intersection management.

Finally, vehicles move according to social rules in Behavioral

models. Social influences are reflected at all levels – strategic,

tactical, and operational.

The first parameters that will be impacted by navigation
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tools and feedback loops are the trip generation (strategic

level) and the path computation (tactical level). Users with

navigators can obtain real-time information on events orga-

nization that can change a planned trip. Furthermore, pre-

established computed paths from source to destination can be

altered as long as real-time road conditions data is obtained.

For example, data on a traffic jam can alter the pre-established

path to avoid the jammed area. This effect can produce

changes in vehicle densities, a parameter used in some of the

aforementioned mobility models.

Interaction between vehicles, intersection management,

speed and lane changing are operational-level parameters that

will be impacted by feedback loops. As far as the vehicle

density changes, the time spent at traffic lights and stops, and

vehicle speed can vary. An interesting point is whether this

effect has local or wider impact. As an example, information

regarding free parking space will affect few number of vehicles

in the surrounding of the parking space. This feedback loop

will have increasing importance depending on how near inter-

ested vehicles are with respect to the parking space. However,

information about an accident or traffic jam can impact large

amounts of vehicles.

V. USE CASES

Among typical vehicular traffic scenarios in city areas, we

select two scenarios where a navigation logic can help to

optimize driving behavior. The use cases address not only the

tactical level, by introducing the change of route, but also the

operational level by adding new movement behavior.

A. Use Case 1: Parking Space Navigation

The distributed management of open parking spaces (not

slotted, by road-side, and not centrally managed) is still a

challenge, primary due to sensing inaccuracies and unsolved

data dissemination trade-offs between connectivity, low costs,

and low latencies.

Parking space navigation influences the movement behavior

of vehicles by a feedback loop attracting vehicles within a

Region of Interest (ROI), e.g., a driver will usually take the

shortest path (optimizing time or distance metrics) toward

an available parking space. If multiple drivers are heading

toward the same region (or even same parking space), this can

have significant influence on the mobility characteristics, e.g.,

occurrence of congestions, change of regional distribution of

number of free parking spaces, longer cruising times because

the parking space is already taken upon arrival, etc.

B. Use Case 2: Traffic Jam Avoidance

Like in the first use case, vehicles change their mobility

behavior depending on their current position with respect to

a traffic jam, which might lead to alternating routes. This use

case is an example of situations where vehicle movements are

affected by areas they want to bypass. Different navigation

algorithms can be implemented to find any alternative route

as long as the congested area is avoided.

One example of navigation alterations is a simple reflection

of the move such as used in closed mobile systems where

nodes are assumed to be reflected at the area borders. Alter-

natively, nodes may also drive along the boundary of the area

or at a specific distance to the boundary of the area.

In more complex navigation logic approaches, the system

might also consider the behavior of other vehicles to utilize co-

operation in order to avoid new congestions on the alternative

route. Furthermore, realistic approaches will have to consider

the policies of city authorities who usually like to avoid re-

routing of traffic to certain areas, for example, residential

areas, and inner-city districts.

VI. EXPERIMENTS

Here, we present the first results of simulation experiments

for selected elementary mobility models. The aim of the exper-

iments is to show the impact of the feedback loop on mobility

characteristics of nodes and their effects on opportunistic data

dissemination. Mobility models used in the simulations are:

• Manhattan (MAN). The Manhattan mobility model [21]

allows nodes to move on a grid of horizontal and vertical

streets. When reaching an intersection, a node moves

either further on the same street (probability p = 0.5),

turns left (p = 0.25), or turns right (p = 0.25). If a node

reaches the simulation border its movement direction is

inverted (reflected).

• Random Trip (RT). The Random Trip mobility

model [18] is implemented as a Random Waypoint model

where movement is limited to an underlying graph, i.e.,

a Manhattan grid. Start and endpoints of trips can lie on

arbitrary positions on the graph. The start point of each

trip lies on the end point of the last trip or on a random

position for the first step.

• Constrained Random Trip (CONST RT). The Con-

strained Random Trip mobility model [18] is an extension

of the random trip model where the start and end points

of a trip have to be located on the graph vertices.

We evaluate the differences of the mobility models along

three selected mobility metrics that are important for oppor-

tunistic data dissemination. The details about the mobility

metrics used are as follows:

• Density (in an area). The node density gives the number

of nodes within an area over the whole simulation period.

• Number of directional changes. Every change of the

current direction of a node is counted; in our setting,

the direction can be changed only along three different

angles, i.e., 90
◦,180

◦, or 270
◦.

• Direction change intensity. The direction change inten-

sity is the angle of a directional change. In our setting,

the intensity is restricted to the three possible angles

mentioned above.

The metrics show differences in the space-based dwelling

behavior of nodes which is important for node contacts

(density in an area) and efficient opportunistic forwarding

(directional changes). In order to see the impact of feedback

on data dissemination, the following metrics are used:
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• Ratio of infected nodes. This metric gives the ratio of

nodes that obtained a copy of the data object during the

simulation.

• Dissemination delay. This delay is defined as the time

from the generation of a data object to its delivery.

A. Mobility Characteristics with/without Navigation

We performed a first simulation study using the OMNeT++

simulator implementing the Manhattan (MAN), Random Trip

(RT), and Constrained Random Trip (CONST RT) mobil-

ity models with and without the two basic feedback loops

described in Section V. We discuss the differences by de-

scribing the empirical probability functions of the mobility

characteristics in terms of their Empirical Cumulated Density

Functions (ECDFs) and by using the Kullback-Leibler (KL)

divergence to quantify the difference of the alterations to the

basic mobility model in a single divergence value (Table II;

using the implementation of the statistics tool R [26]). The

higher the divergence values, the more the empirical PDFs

differ. The simulation parameters are summarized in Table I.

Parameter Value

Number of nodes 36

Simulation area 2x2km

Number of parking spaces 36

ROI parking space 500m

Node speed 50km/h

Pause time 0s

Manhattan grid size 200m

Simulation time 3600s

Analysis grid 50m

TABLE I
SIMULATION PARAMETERS.

In the first scenario (NAV), vehicles are attracted by posi-

tions (overall, 36 parking spaces). When a vehicle moves close

to a free parking space it halts the underlying mobility model

and navigates to the parking space following the shortest

path. Here, the information about parking space availability

forms the feedback loop. When leaving the parking space, the

underlying mobility model is resumed until the node comes

close to another free parking space.

In the second scenario (REP), four repulsion areas simu-

lating congested regions are placed on the simulation area

(here, circles of equal radius). When a node comes close to a

repulsion area following the MAN model, it will be reflected

at the border. If the node is following the RT or CONST

RT models, the shortest path will be calculated so that the

repulsion areas are circumvented. In the RT model, this also

means that the node will be first reflected if the destination

point is in between two crossings, then it circumvents the area.

Density: Density results show that the distribution of nodes

is most uniform for MAN with a slight increase toward the

center, while RT and CONST RT show higher densities in

some regions due to traveling along (similar) shortest paths.

For the NAV based models, densities near parking spaces

increase while the repulsion scenario produces the expected

repulsion areas. The distribution of densities outside the repul-

sion areas for all REP models is very similar to the original

models with peaks on intersections. To give details about the

alteration of densities, the cumulative density functions of

node density are given in Figure 2 (NAV) and 3 (REP).
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Fig. 2. ECDF Density of mobility models with and without navigation.

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

Density

 

 

MAN

MAN REP
RT

RT REP
CONST RT

CONST RT REP

Fig. 3. ECDF Density of mobility models with and without repulsion areas.

It can be seen that the different models have similar density

ECDFs in the NAV use case as for the original model. Here,

only for MAN NAV, slightly lower and higher densities occur

more often than for MAN. Higher densities occur more often

in the REP use case for RT and CONST RT (as well as slightly

lower densities), due to the factual shrinking of the dwelling

area, whereas the number of vehicles on the area remains

constant. The densities of MAN REP are influenced by the

reflection at borders of the repulsion areas and simulation

area. The density on streets located on the simulation area

boundary is low while the density on the remaining streets

is high and relative uniform which is reflected by a small
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number of low densities in the ECDF. The low density on

these boundary streets is caused by the fact that the majority

of nodes coming close to a boundary are reflected between

a simulation and a repulsion area boundary and only a small

number of nodes moves directly to an intersection located on

a boundary. This phenomenon shows that feedback loops may

force elementary mobility models to show concentrations in

areas leading to lower relative frequencies of medium-large

densities and more in the extreme cases. The KL divergence

given in Table II confirms this observation by giving only small

divergence numbers with slightly higher values for the REP

model when compared to the NAV model for each elementary

mobility model and slightly higher divergence values for MAN

models.

Number of Directional Changes: In Figure 4, the ECDF of

the number of directional changes is shown. When comparing

the basic elementary models against each other, it can be seen

that the MAN mobility model shows the highest number of

directional changes. On each crossing there is a 50% chance

to change the movement direction. RT based models follow

the shortest path, which involves mostly straight movements

with a low number of directional changes along the edges of

the Manhattan grid. The number of directional changes for

RT is higher than for CONST RT because path endpoints are

not limited to intersections but can be located on arbitrary

positions on the grid resulting in more directional changes.

Applying now NAV and REP navigation strategies, the num-

ber of directional changes increases which leads to a visual

shift of the ECDFs in all the REP models when compared to

their original models. The navigation logic of NAV and REP

perturbs the movements of CONST RT and RT along straight

paths which generates additional directional changes. This

indicates that the main effect on the change of the number of

directional changes is caused by the break-down of the mostly-

straight shortest paths. In particular for the model with lowest

number of directional changes, i.e., CONST RT and RT, the

NAV and REP strategy yields remarkably higher frequencies

at higher numbers of directional changes. In case of MAN

NAV, the frequency of lower and higher number of directional

changes increases. For MAN REP there is a drastic increase

of directional changes caused by less and shorter available

movement paths. The smaller number of available connected

paths increases the chance that a movement leads to reflection.

The observations are also confirmed by the KL divergence

values given in Table II. First, these values show that there

is divergence and, second, they confirm that the REP models

impact the behavior of the elementary models more than the

NAV models (most significantly in the MAN case).

Direction Change Intensity: Figure 5 shows the mean

number of relative directional changes for the three possible

turns. As seen by investigating number of directional changes,

the occurrences of directional changes increases for RT and

CONST RT with REP and NAV. The number of left and

right turns is very similar within each model and increases

slightly for RT REP and CONST RT REP because shortest

paths have to circumvent repulsion areas which leads to more
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Fig. 4. ECDF Number of directional changes.

turn left and rights. For MAN NAV, there is hardly any

change in the total number of directional changes, but there

is a change in the ratio between different angles. In MAN,

turnarounds (180◦) occur only when a node is reflected on the

simulation border. For MAN NAV, the number of turnarounds

increases because during navigation now all three directional

changes are allowed. For MAN REP, reflection also happens

on repulsion areas and the number of available connected

paths is lower which leads to additional turnarounds. The

KL divergence value confirms this observation yielding low

divergence values in the RT based models both for NAV and

REP, while in the MAN case, the KL divergence values are

slightly higher, in particular for the REP case when compared

to the NAV case (see Table II).
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B. Data Dissemination Impacts

We now consider the dissemination of a message in the grid

area using opportunistic networking which has been studied

in the context of epidemic modeling. A node with a copy

of the message is called an infected node. Every time an

infected vehicle meets another vehicle, it copies the message

and infects the new vehicle. Dissemination is then studied as

how the infection is propagated in the area.

In Figures 6 and 7, the ratio of infected nodes as a function

of the Dissemination Delay is drawn for the considered mo-

bility models. We may first observe that the different models

produce different dissemination delays. MAN models produce
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TABLE II
KULLBACK-LEIBLER (KL) DIVERGENCE: THIS VALUE SHOWS THE DIVERGENCE OF THE NAV AND REP MODEL VARIANTS OF THE ORIGINAL

ELEMENTARY MOBILITY MODELS MAN, RT, AND CONST RT RELATED TO THE CORRESPONDING ORIGINAL ELEMENTARY MOBILITY MODEL.

MAN RT CONST RT

Metric MAN NAV MAN REP RT NAV RT REP CONST RT NAV CONST RT REP

Density 0.0425 0.7669 0.0041 0.0646 0.0067 0.0946

Number of dir. ch. 0.1790 8.2773 0.1642 1.2550 0.3292 1.6145

Intensity of dir. ch. 0.0658 0.4348 0.0009 0.0016 0.0005 0.0057

higher dissemination delays than RT models. The explanation

is due to the fact that in the Manhattan mobility model, a

vehicle arriving to a cross-road chooses randomly a direction.

This effect can be seen as a kind of random walk. However,

in the RT and CONST RT, vehicles follow a trip selection

rule. Thus, in the MAN model spreading is slower than in

RT and CONST RT. The difference between RT and CONST

RT is due to the underlying mobility model, e.g., CONST

RT yields less directional changes than RT, producing thus

different dissemination delays.

Navigation rules impact the way nodes meet in the grid

and therefore how dissemination is spread, Figures 6, 7 (with

confidence intervals) and Table III. For example, let us take

the MAN mobility model with parking space navigation. The

vehicles stop moving randomly and move toward the parking

area. This effect changes the way vehicles meet in the grid with

respect to a random walk-like mobility model: vehicles travel

toward an attraction point in which they will surely contact.

For RT and CONST RT, contacts depend on how end points

are chosen since vehicles move toward the previously chosen

end destinations. For example, in the CONST RT mobility

model, nodes moving toward the same end points tend to chose

similar paths. Besides, some vehicles near parking spaces

change their original direction, and finally they meet in the

surroundings of the parking space. RT behaves similarly as

CONST RT in this case.

In the use case navigation with repulsion areas, we observe

again impacts on data dissemination (Figure 7). MAN REP

obtains higher dissemination delays than pure MAN without

repulsion. The reason is again how the mobility model be-

haves. When a node collides with the repulsion area, it reflects.

Direction changes are randomly chosen, thus, circumvention

of the area depends on these random directions. Hence, the

infection wave moves slower than without repulsion: every

time node moving along the chosen direction collides with

the repulsion area, the node moves backwards, increasing

the traveling distance for the infection to arrive nearby the

opposite side of the repulsion area. For RT and CONST RT,

however, when a node reaches the repulsion area, it looks

for an alternative path circumventing the area. Any node that

wants to cross the repulsion area also has to circumvent the

area, thus increasing the probability of meeting other nodes

that avoid the repulsion area.

In both cases of, first, navigation to an attracting point

and, second, repulsion, we observe how navigation increases
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or decreases delay with respect to those models without

navigation as summarized in terms of average dissemination

delays in Table III. As a conclusion, we can deduce that

navigation changes the way vehicles meet, impacting how fast

the dissemination spreads in a given area.

VII. CONCLUSIONS AND FUTURE WORK

We presented a structured way of including navigation

policies by using a feedback loop in mobility modeling.

We focused on two typical traffic scenarios in city areas,

i.e., navigation to free parking spaces and repulsion from
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TABLE III
AVERAGE DISSEMINATION DELAYS (IN SECONDS).

MAN MAN NAV MAN REP

190.68 185.83 217.60

RT RT NAV RT REP

163.49 155.59 158.23

CONST RT CONST RT NAV CONST RT REP

183.08 167.90 166.94

congested areas. Two feedback loops have been introduced to

three elementary mobility models: Manhattan mobility model,

Random Trip model, and Constrained Random Trip model.

By means of simulation, we observed that the node density

per area and the directional changes were impacted by the

feedback loops. The distribution of node density changed,

showing now higher relative frequencies of high node densities

while the frequencies of medium-scale densities decreased. In

terms of directional changes, the feedback loops caused in

most cases an increase of the number of directional changes; in

the Manhattan mobility model, the frequencies of specific turns

changed. When applied to opportunistic data dissemination,

we observed that average dissemination delays and the number

of informed nodes are affected by the navigation feedback

loops. By adding attraction points and repulsion areas, new

contact options are generated that are beneficial for data dis-

semination, but the feedback loops also make contact options

disappear when changing the navigation.

As a consequence of these first results, we conclude that

feedback loops cannot be ignored in VANET models that target

realistic mobility behavior in which navigation information

is spread to vehicles. However, in our investigation we still

have reduced the system complexity by assuming that the

information about the areas of interest (attracting and repelling

areas) is instantly available at all nodes distributed via an

out-of-band channel. By lifting this simplification, the oppor-

tunistic data dissemination will itself impact the promptness

of the information spread in a complex cycle. The required

investigations are a subject of future work.
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