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Abstract—Mobile cellular networks can serve as ubiquitous
sensors for physical mobility. We propose a method to infer vehicle
travel times on highways and to detect road congestion in real-
time, based solely on anonymized signaling data collected from a
mobile cellular network. Most previous studies have considered
data generated from mobile devices active in calls, namely Call
Detail Records (CDR), an approach that limits the number of
observable devices to a small fraction of the whole population.
Our approach overcomes this drawback by exploiting the whole
set of signaling events generated by both idle and active devices.
While idle devices contribute with a large volume of spatially
coarse-grained mobility data, active devices provide finer-grained
spatial accuracy for a limited subset of devices. The combined use
of data from idle and active devices improves congestion detection
performance in terms of coverage, accuracy, and timeliness. We
apply our method to real mobile signaling data obtained from
an operational network during a one-month period on a sample
highway segment in the proximity of a European city, and present
an extensive validation study based on ground-truth obtained
from a rich set of reference datasources—road sensor data, toll
data, taxi floating car data, and radio broadcast messages.

Index Terms—Cellular floating car data, large mobility data
sets, travel time estimation, road congestion detection, mobility
sensor.

I. INTRODUCTION

COLLECTING extensive information about vehicular traf-
fic status and travel times in a timely and efficient man-

ner is a fundamental prerequisite for intelligent transportation
systems (ITSs). Traditional approaches to road traffic monitor-
ing are prone to several technical and economical limitations
[1]–[3]: systems based on road-mounted detectors or cameras
suffer from high installation costs, which pose an obstacle
to the full coverage of a road network, while systems based
on floating car data [4]–[7] may be limited by the size and
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representativeness of probes, e.g., when using GPS traces from
a taxi fleet or public transport vehicles.

We propose an alternative approach based on the observation
of the signaling traffic of a mobile cellular network. Any
mobile terminal—including personal phones and tablets, but
also navigation devices and on-board units (OBUs)—attached
to the cellular network produces signaling messages that can be
captured passively on the network side, anonymized, and then
processed to derive mobility patterns. We use these messages to
infer traffic status and congestion episodes on highways in real-
time. Instead of a costly deployment of new sensors, we exploit
the legacy cellular network as a large-scale real-time mobility
sensor. The traffic information extracted with our approach can
serve as a powerful input for ITS applications.

The idea to extract road traffic information from cellular
network data has been considered in several other studies. How-
ever, in the vast majority of previous work, traffic status reports
leverage data only from “active” devices, i.e., devices engaged
in a voice call or data connection, based on call details records
(CDR) [8]–[11]. Active devices can be tracked at cell level, i.e.,
with relatively high spatial accuracy, but represent only a small
fraction of the device population. In our recent work [1], [12],
[13], we introduced a novel approach that exploits complete
signaling data captured within the cellular network infrastruc-
ture, thus extending the number of observable events. This
way, also “idle” devices can be observed, which are logically
attached to the cellular network but not involved in any call
nor data connection. These devices can be observed at a spatial
resolution of a “location area,” i.e., a spatial region consisting of
multiple neighboring cells. Idle devices are the overwhelming
majority of observable devices at any given time, and therefore
our approach increases considerably the size of the sample set.

Despite this increase in data coverage, still only a fraction of
road vehicles can be observed by mobile phone data, and the
question arises whether this approach provides a good estimate
of the whole population of vehicles. In a first investigation, we
find that this estimation is feasible. Fig. 1 provides a visual
comparison of the number of vehicles per hour measured by
a static road sensor and the number of devices that exchanged
signaling messages while traveling in the area. As can be seen,
there is a strong correlation between the amount of cars on the
highway and the number of mobile devices that can be tracked
with our approach. Most importantly, the ratio between the two
values remains stable and is almost linear. This result shows that
with more complete signaling data there is no further need for
dynamically compensating variations of the call habit in space
and/or time, a correction task that is instead required when
using CDR data. This is evident when one compares Fig. 1, that
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Fig. 1. Comparison of average number of vehicles per hour (upper plot) vs.
average number of tracked phones per hour (lower plot) during working days
(Mon-Fri) with regular traffic flow over a period of one month for one sample
road section (Pearson’s correlation coefficient: 0.97). Similarly good agreement
between the two profiles is found also in other road sections.

includes both idle and active devices, with Fig. 6 in [9, p. 1434]
that considers only active devices involved in calls. As noted
there, the relationship between the volume of phone calls and
vehicles varies with the time of day due to calling habits, e.g.,
there are very few calls before 8h00 despite the large number of
cars during the morning rush-hour.

Motivated by this preliminary finding, we develop a method
to jointly process data from active and idle devices for the
purpose of estimating travel times and detecting congestion
episodes in real-time. We generalize the approach sketched
in [13], wherein a simple algorithm based on data from idle
devices was presented. We introduce algorithms to best lever-
age active devices to increase the spatial granularity of the
estimation. In detail, we make the following contributions:

• We present the concept of an online monitoring system for
network signaling traffic that exploits the mobile cellular
network as a large-scale real-time sensor for mobility.
In this frame, we provide a detailed description of the
signaling events generated by mobile devices (Section II).

• We introduce a method for estimating the expected travel
time of vehicles on highway segments based solely on the
signaling events observed in the network. This method
features a semi-automatic approach for identifying cell
pairs covering highway segments and for computing in-
dividual traversal times through the corresponding areas.
The method adapts to the segment size and includes cell
clustering to enlarge the set of traceable devices for short
road segments (Section III).

• A cascaded process is presented for detecting congestion
episodes from the estimated travel times across different
road segments. In a first step, a congestion episode is
identified based on the large set of both idle and active
devices. This results in a reliable and fully automatic con-
gestion detection. Then, the spatial accuracy is improved
by reducing the observable road segment size leveraging
data only from active devices (Section IV).

• The proposed method is demonstrated with one-month
of (anonymized) signaling data from an operational

Fig. 2. Cell with an omnidirectional antenna (left) and cells (cell sectors) A, B,
and C in the case of sectoral antennas (right).

cellular network, and validated against four traditional
traffic monitoring datasets: road sensor data, toll data,
taxi floating car data, and radio broadcast announcements
(Section V). Compared to these validation data, our
approach is not only more reliable in detecting congestion
episodes, but also faster on average and spatially more
accurate (Section VI).

II. SYSTEM DESCRIPTION

We now introduce the mobile cellular network as a large-
scale mobility sensor and describe the way active and idle
devices are observed in the network. Further we explain how
network signaling information can be used to infer physical
device mobility.

B. Cellular Network Infrastructure

The infrastructure of a mobile cellular network is composed
of a radio access network (RAN) and a core network (CN).
The CN is divided into two distinct domains, i.e., the circuit
switched (CS) and the packet switched (PS) one. Mobile de-
vices can “attach” to the CS for voice call services, to the PS
for packet data transfer, or to both domains simultaneously.
Radio communication occurs between a mobile device and a
fixed base station serving one or more radio cells. Cells are
the smallest spatial entities in the cellular network. In general,
they can be classified according to the shape and range of
the coverage area. If the cell is served by an omnidirectional
antenna, the coverage area can be approximated by a circle.
If the cell is served by a directional antenna, the cell (also
called “sector” in this case) is characterized by a beamwidth,
a north-based azimuth, and a range (see Fig. 2). In both
cases the range of outdoor cells depends on the transmission
power and the antenna design, spanning from less than hundred
meters (picocells) up to several kilometers (macrocells) [14].
Depending on the radio bearer, cells can be classified as 2G
(GSM/EDGE), 3G (UMTS/HSPA), or 4G (LTE). A single mast
usually holds several antennas, each covering a particular sector
with a specific technology.

At any time, each mobile device can be in active or idle
state. During voice calls and data transfers, i.e., while sending
and receiving IP packets, the devices are in active state. When
the voice call is terminated or a timeout expires after the last



Fig. 3. Schematic overview of signaling event generation on a generic highway—u: location update; d: data connection; s: SMS; c: call; (a) using only cell
handover events. (b) extending cell handover events with information created by two consecutive calls. (c) using all event types.

data packet sent or received, the device switches to idle state
and releases the radio link. Note that also “always-on” devices
with permanently open data context (so called “PDP-context,”
cf. [15], [16]), as typical for smartphones, remain in idle state
most of the time and switch to active only upon the actual
transfer of data packets.

Neighboring cells are grouped into larger logical entities
called Routing Areas (RAs) and Location Areas (LAs), respec-
tively, for the PS and CS domain. One LA can contain one
or more RAs, while each RA is entirely contained within one
LA. To remain reachable, idle devices always inform the CN
whenever they change LA and/or RA, i.e., they become active
for a short time to communicate an LA/RA transition. Devices
in active state reveal to the network also cell changes within the
same LA/RA. In other words, the position of active devices is
known by the network at the cell level, while the position of idle
devices is known only at LA/RA level.

B. Mobile Phone Signaling Data

The basis of our analysis is a sample of anonymized sig-
naling data from the cellular network of a European country,
where the network operator has about 40% market share. A
passive monitoring system collects signaling messages from
the links between the cellular RAN and CN covering 2G
and 3G access (specifically on the IuPS, IuCS, Gb, and A
interfaces [16]) and reduces the data to a stream of event-based
tickets. At the time of monitoring, the network operator offered
GSM, GPRS/EDGE, UMTS and HSPA access, and our dataset
includes signaling messages originated by all these access
technologies. The stream is delivered in near real-time to a
processing machine in charge of analyzing the signaling events
generated by all mobile devices registered in the network. Each
ticket contains the following fields that are relevant for our
study (see [13] for further details):

• an anonymous identifier of the communicating device;
• cell identifier, which can be mapped to the geographical

cell location;
• reception timestamp;
• type of signaling message.

The sequence of events along the visited cells allows to estimate
the physical mobility of vehicles carrying devices.

C. Signaling Events

Monitoring a mobile cellular network allows to observe a
variety of signaling events generated by mobile devices in
multiple cells. Our system is designed to take into account any
signaling event that can be captured by the network monitoring
system, including cell handovers, consecutive calls, SMSs,
LA/RA updates (i.e., change of LA/RA), and also opening of
sporadic data connections, e.g., from smartphones that periodi-
cally acquire the radio link, perform some background activity,
and then release it. This results in a clear advantage of our
approach compared to previous works that were limited to
cell handovers of active devices, but also imposes additional
challenges due to the marked heterogeneity of the observed
signaling events.

To illustrate the gain in terms of mobility information, we
sketch in Fig. 3 a sample vehicle driving along a generic high-
way segment. The road segment is covered by three different
LAs (A, B, and C), each consisting of several cells (A1 · · ·An,
B1 · · ·Bm, and C1 · · ·Ck, respectively). The maximum amount
of mobility information would be captured if a device in the
vehicle is involved in a call during the entire time (row “Active
terminals” in the figure). In reality, this happens very rarely.
The vast majority of devices, especially on the road, are not
engaged in long-lasting phone calls, i.e., they remain in “idle”
state most of the time (the row “Idle terminals” shows events
generated when the device remains in idle state for the whole
period). Fig. 3 depicts a plausible signaling pattern, which
consists of LA changes/updates (“u”), phone calls (“c”), SMS
messages (“s”), and data connections (“d”). In the traditional
approach, cell handover events from active calls are observed
(row (a)). The method proposed in [9] extends this approach by
considering pairs of consecutive calls (e.g., calls c3, c4 in row
(b)). Finally, row (c) shows what our system is able to capture
by observing all different types of signaling event.

We remark that obtaining the full set of (anonymized) signal-
ing data is in general technically more complex and expensive
than collecting CDR data. However, this is still feasible at



reasonable marginal costs, considering that many network op-
erators already run powerful monitoring systems in support of
network operation and troubleshooting processes. The invest-
ment in the additional required monitoring infrastructure can
be justified whenever a proper business model is in place to
monetize the more accurate and complete mobility information
that can be extracted from such data.

III. TRAVEL TIME ESTIMATION

Road traffic may be described in terms of travel time or,
alternatively, vehicle speed. Along the highway, the speed of the
fastest vehicles—excluding special vehicles such as emergency
vehicles—allows to capture slowed-down traffic best. Thus, we
focus on the travel times experienced by the fastest vehicles.
Our objective is to estimate the minimum travel times on
sequences of road segments based solely on (i) the signaling
exchanged between mobile terminals and the cellular network
and (ii) the geographical position and antenna configuration
(orientation and beamwidth) of the cellular base stations where
the signaling is observed.

The travel time is defined as the time required to pass through
a road segment located between the boundaries of two cells
exposed to signaling events, i.e., a cell pair. As the trespassing
of the cell boundaries cannot be directly observed, the travel
time cannot be calculated directly but must be inferred from the
available signaling data. To this end, we consider the difference
between the time-stamps of two signaling events observed in
distinct cells within a cell pair, which we term the traversal
time. In the following, we first explain how cell pairs are
identified and associated to road segments. Then, we present
a robust method to infer the expected travel time for selected
road segments based on the set of measured traversal times
between the corresponding cell pairs. Finally, we extend our
approach by considering clusters of cells instead of single cells
for pairing, so as to include more devices into the measurements
and improve the performances.

A. Identification of Cell Pairs and Cell Sequences

Signaling events are reported from all devices attached to a
cell. In a preliminary step we identify the subset of cells serving
devices that are traveling along the highway under investiga-
tion, and pair them. One option is to rely on a fully manual
procedure based on visual inspection of the cell coverage map.
This requires significant effort, especially if the radio network
design is complex and involves multiple layers. Instead, we
follow a semi-automatic procedure: in a first phase cells are
selected and paired by an automatic algorithm, leaving only
the final selection of pairs to a manual step. The first phase
is carried out by Algorithm 1, which identifies cell pairs in
proximity of the highway based on the number of traversing
devices in each direction. The result is a set of ordered cell
pairs (cs, ca), where cs is the “start cell” and ca the “arrival
cell.” Throughout this paper we assume that the highway is the
fastest connection between cs and ca, i.e., the fastest mobile
device users are all traveling on the target highway. Note that
we consider ordered pairs to account for the driving direction.

The methodology for estimating travel times can be applied
independently to both directions.

Algorithm 1 Cell pair identification

Require: Run for test period
tmax ⇐ the maximum traversal time (constant value which
assures that vehicles, i.e., devices, will be able to drive
through this segment also during heavy congestion episodes)
xmin ⇐ the minimum number of devices required
P ⇐ set containing all cells in proximity of the highway
for all cs ∈ P do

for all ca ∈ P do
if the ordered pair (cs, ca) tracks devices traveling in
the direction under investigation then

For each pair (cs, ca): count the number of mobile
devices that create an event in cell cs and another
event in cell ca within the time frame of tmax

end if
end for

end for
return All ordered pairs (cs, ca) which are able to track more
than xmin devices per day

Out of the set produced by Algorithm 1, the final pairs
associated to various highway segments are then selected based
on the following (partly counteracting) criteria:

1) A cell pair should track the largest number of devices to
guarantee reliability of the travel time estimation. This
criterion tends to pick pairs consisting of LA entry cells
wherein idle devices typically generate a large number of
LA update events.

2) A cell pair should cover the shortest possible highway
segment to improve spatial accuracy. This tends to include
internal segments within an LAwhich can be observed
only through active devices.

The resulting final set will include at least one cell pair
between LA boundaries (observed mostly but not exclusively
via idle devices) plus a variable number of shorter pairs (within
one LA or across two subsequent LAs) depending on the
density of active devices.

B. Computation of Individual Traversal Times

For every device i traversing a cell pair (cs, ca) we compute
the individual traversal time ti = ta,fi − ts,li , where ta,fi is the
first event in arrival cell ca, and ts,li is the last event in start
cell cs. Algorithm 2 describes the procedure in detail. This
approach is motivated by the spatio-temporal characteristics
of event observation in the cellular network. We refer to the
spatio-temporal plot of Fig. 4 and consider the case of a generic
device traveling at fixed (unknown) speed v from cell cs to
ca along the highway. Ds and Da denote the diameters of
the two cells, respectively, and dsa their inter-cell distance.
Assume that the device i generates the sequence of signaling
events sketched in the plot. It is important to remark that every



Fig. 4. Spatio-temporal representation of the traversal time calculation be-
tween two cells cs, ca at distance dsa. The linear distance along the highway
(from an arbitrary reference point) is reported on the vertical axis. Each
signaling message—three in cell cs and two in cell ca in this illustration—carry
accurate timing information and only cell-level spatial information.

signaling event bears accurate temporal information from the
associated timestamp, but only coarse spatial information from
the cell identifier. Therefore, every signaling event maps to a
thin vertical bar in the spatio-temporal plot, stretching over the
whole cell area. The sequence of signaling events observed
by the mobile network corresponds to a sequence of “vertical
bars” (blue shadowed) in Fig. 4. Besides the real trajectory,
that is unknown, there is an infinite number of other possible
trajectories consistent with the set of observations. In other
words, the mobile signaling process can be seen as a non-
invertible process of sampling in time and quantization in space
of individual trajectories.

It can be easily seen that the ratio

v∗ =
dsa

ta,fi − ts,li

≤ v (1)

represents the tightest lower bound to the real (unknown)
average speed v that can be computed from the data at hand. In
other words, the generic device i must travel at least at speed v∗

between the two cells to match the observed sequence of mes-
sages. By using this lower bound, we potentially underestimate
the vehicle speed, but never overestimate it. This feature is key
to the success of our method. In fact, as we aim to characterize
the traversal time of the fastest users to capture slow-down
effects, our approach is extremely sensitive to systematic over-
estimation of vehicle speed, but tolerates well a certain degree
of speed underestimation. Recalling equation (1), estimating
the traversal time by ta,fi − ts,li for the inter-cell segment dsa
is thus well motivated. Yet, from Fig. 4 it is evident that the
lower bound estimate (1) can be very poor when the inter-cell
distance is small compared to the cell diameter, i.e., the error
v − (dsa/(t

a,f
i − ts,li )) can be large for small values of dsa. In

the extreme case of adjacent cells (dsa = 0) such an estimate
is meaningless. For this reason, our algorithm is designed to
consider only pairs of cells (or clusters thereof) with a minimum
of separation, i.e., adjacent and close-by pairs are excluded.

Fig. 5. Example of junctions (a) joining and (b) leaving the highway.

Algorithm 2 Individual traversal time

Require: Cell pair (cs, ca), i ⇐ device ID
while true do

Es
i ⇐ set of events of device i observed in cs

Ea
i ⇐ set of events of device i observed in ca

eai ⇐ new event of device i in ca
ta,fi ⇐ time when eai occurred, arrival time of device i
if ∃ another event in Ea

i within time frame ta,fi − tmax

then
continue //only first event in ca is of
interest

else
//eai is the first event in ca
//now get last event in cs within tmax

esi ⇐ last event in Es
i within ta,fi − tmax

ts,li ⇐ time when esi occurred, start time of device i
ti⇐ ta,fi −ts,li //individual traversal time
of i
tracei ⇐ complete trace of device i: device ID i, start
time ts,li , arrival time ta,fi , traversal time ti

end if
end while

For some cell pairs, care must be taken in cases where cell
pairs capture noise from secondary roads in the vicinity of the
target highway and/or junctions. Consider, for instance, the case
sketched in Fig. 5(a) and (b), where, the traversal times from
cell c1 to cell c3 may differ significantly depending on whether
vehicles are traveling exclusively along the highway or whether
they join and/or leave the highway.

Such cases can be easily identified by manual inspection
of the traversal time distribution on days where a congestion
episode has been observed in the corresponding area, e.g., by
traditional road monitoring (cf. Section V-A). An example of
such a situation can be seen in Fig. 6. In principle, if these cases
were very frequent, it would be possible to develop algorithms
that are customized for areas with joining or leaving side roads.
Since there are only few such cases in our data set, we decided
to disregard them.

Based on the set of individual traversal times through the
area delimited by a cell pair, our goal is to estimate the ex-
pected travel time through the corresponding highway segment.
Hereafter we denote the measured traversal time by t and the
estimated travel time by τ .

C. Estimation of Average Travel Time

The measured traversal times of vehicles can be generally
divided into those that are representative samples of the road
status and those that are not. The latter can be either slower



Fig. 6. Example of a cell pair that observes vehicles traveling on two different
roads, r1 and r2. Note the increase in traversal times for vehicles traveling on
road r1 between 17.00 and 18.00h, while the traversal times on road r2 are not
affected and remain constant. Outside this periods the recorded traversal times
may refer to either r1 or r2.

(e.g., users that take a break during their journey, users that
travel on slower side roads, etc.) or faster (e.g., motorcycles,
vehicles driving on emergency lanes, etc.) than the actual trip
time of an ordinary vehicle. To infer the status of the road
we adopt a heuristic to filter out non-representative samples.
Since no context information is available, we must rely on
the traversal times themselves, i.e., we follow an purely data-
driven approach. We filter out too slow and too fast de-
vices based on dynamic boundaries built upon the following
quantities:

• tmin: For each cell pair (cs, ca), we calculate a minimum
traversal time tmin along the highway segment covered by
this pair from the traces of the individual traversal times
(tracei) computed by Algorithm 2. tmin is calculated as
the 1%-quantile of all individual traversal times during
a given test period and gives a measure for the fastest
devices that were observed in the specific segment.

• thlo: A lower threshold value is used as a factor for
filtering out too fast users. thlo is set to 0.8 for all cell
pairs, to filter out only extremely fast users, and not all
users that are faster than tmin.

• thup: The upper threshold value thup is used as a fac-
tor for filtering out users that are too slow. The value
of thup changes for each cell pair and is set semi-
automatically, depending on the length of the highway
segment covered by a cell pair and the number of devices
that can be observed. The parameter thup is inversely
proportional to the traversal time, because of the higher
relative dispersion of traversal times for shorter segments
(cf. Section III-B). As a result, thup is set to a larger value
for shorter segments, and to a smaller value for longer
segments. This way, fewer individual traversal times are
considered as non-representatives for shorter segments.
As a rule of thumb, the factor thup is about 1–2 for long
segments and up to 10 for short segments in our setting.
Yet, the value of thup needs to be manually set for every
cell pair based on preliminary data observation.

• τest: This value represents the expected (estimated) travel
time through the corresponding highway segment, as de-
scribed later.

• tminrecent: This value refers to the traversal time of the
fastest device tracked during the last m seconds. m is
empirically set to 30 seconds. tminrecent gives a recent
overview of the status on the highway.

Note that all above quantities except thlo are set to different
values for every cell pair. While tmin and thup are static values,
τest and tminrecent are dynamically adapted according to the
rules defined hereafter.

The filtering of non-representative traversal times is based
on the above quantities. Algorithm 3 summarizes the three
main conditions that are used to filter away too slow and
too fast devices. Once an individual traversal time has been
classified as non-representative, it is henceforth excluded from
the calculation of the expected travel time. While Condition 1 in
Algorithm 3 is meant to disregard super-fast users, Conditions 2
and 3 aim at filtering out users with individual traversal times ti
that are obviously too high. The former triggers if ti exceeds
τest by more than a specific threshold, the latter triggers if
ti has passed condition 2, but a significantly faster individual
traversal time has been observed recently. Fig. 7(a) shows the
non-representative samples detected by Algorithm 3 for one
example cell pair along one day.

Algorithm 3 Function isRepresentative(ti)

Require: thlo Lower threshold. thup Upper threshold, de-
pends on the segment length
tminrecent ⇐ fastest representative individual traversal
time during the last m seconds
//Condition 1 - too fast (helicopter, motor-
cycle, emergency car, etc.)
if ti < (tmin × thlo) then

return false
end if
//Condition 2 - too slow
if ti > (τest + (tmin × thup)) then

return false
end if
//Condition 3 - too slow
if ti > (tminrecent × 2) then

return false
end if
return true

After eliminating non-representative traversal time samples,
we are able to estimate the current expected travel time τest.
For each cell pair (cs, ca), we define a vector �trecent which
stores the recently recorded representative traversal times for
this cell pair. We introduce an algorithm that updates τest based
on �trecent and automatically adapts to the number of recently
tracked devices. This adaptive behavior allows to adjust the
influence of the most recently recorded individual traversal
times on τest as follows:

• If only few devices can be tracked recently, �trecent is
small and therefore not very reliable. Thus, these few



Fig. 7. (a): Individual traversal times as computed by Algorithm 2; (b): estimation of expected travel time as computed by Algorithm 4. Non-representative
individual traversal times as filtered out by Algorithm 3 are also shown in (b).

recently recorded individual traversal times should have
only a small influence on τest.

• If, on the contrary, �trecent is large and therefore reliable,
it should have high influence on τest.

Motivated by these criteria, we compute τest based on adaptive
exponential smoothing [17] as detailed in Algorithm 4. The re-
cency is defined by the time framen (typically set to 60 seconds).
Large values of the parameter α give greater weight to recent
changes in the data. In our approach, α is directly proportional
to the size of �trecent (i.e., the number of elements therein)
normalized by a factor 1/ρ to balance the influence of �trecent
on τest. Fig. 7(b) demonstrates the robustness of our algorithm
to data dispersion and outliers: although individual travel times
are very disperse, Algorithm 4 manages to successfully capture
the underlying travel time profile, as shown by the black solid
line representing τest.

Algorithm 4 Estimating current expected travel time τest

Require: tmin, ρ (empirically set to 20), n (empirically set to
60 seconds)
while true do
traceHistory ⇐ set of recently processed traces
ti ⇐ current individual traversal time
tracei ⇐ current trace of device i (cf. Algorithm 2)
if isRepresentative(ti) == false then

continue //do not consider tracei
else
�trecent ⇐ traces from traceHistory that were
recorded within the last n seconds
if isempty(�trecent) then

Incrementally increase n until �trecent contains at
least one element

end if
Add ti to�trecent //insert after last element
α = min(1, size(�trecent)/ρ) //smoothing factor
τnewest = τoldest + α× (mean(�trecent)− τoldest )
Add tracei to traceHistory

end if
end while

Fig. 8. Clustering principle: (a) single cells defining start and arrival area, and
(b)–(d) different cell clusters defining start and/or arrival areas.

D. Cell Clustering

The quality of travel time estimation strongly depends on the
number of observable devices. When cs and ca are located at the
entry of their respective LA, the number of observations is large
due to the vast amount of idle devices emitting LA updates.
However, for other cell pairs enclosing smaller road segments,
the number of active devices is not always sufficient for a
reliable estimation. To counteract this problem, we propose to
extend the concept of start and arrival cells. Instead of using one
single start and one single arrival cell, we consider a cluster of
start cells and/or a cluster of arrival cells. This way, we aim
at increasing the sample size sequentially, i.e., we add cells
to the clusters where appropriate and until a sufficient number
of devices can be observed. We term these clusters as “start
cluster” and “arrival cluster,” and the highway area covered by
them as “start area” and “arrival area,” respectively.

Consider an example of two cells c1 and c2 whose areas of
coverage are partly overlapping, and a cell c5 located at some
distance to c1 and c2, as sketched in Fig. 8(b). Since c1 and c2
cover approximately the same area of the target highway, the
two highway segments enclosed by the cell pairs (c1, c5) and
(c2, c5) are largely overlapping. If neither of the two cell pairs
(c1, c5) and (c2, c5) is able to track the minimum number of



Fig. 9. Example of the coverage area of two cells located at the same mast.
(a): bird’s eye view. (b):lateral view.

devices required for reliable travel time estimation along that
segment, it makes sense to merge the cells c1 and c2 into a sin-
gle start cluster {c1, c2}. The start area is defined by the union
of the highway areas covered by the cells of the start cluster,
i.e., c1 and c2 in the example of Fig. 8. Similarly, it is possible
to build a larger arrival cluster, as sketched in Fig. 8(c) and (d).

Fig. 8 also reveals the potential disadvantage of this ap-
proach. Using a cluster of start or arrival cells may in-
crease the length of the start or arrival area. As a result,
the individual traversal times may become less accurate, i.e.,
clustering increases the relative dispersion of traversal times
(cf. Section III-B). However, for properly defined clusters this
drawback is largely outweighed by the gain in sample size.

A proper selection of the cells eligible for clustering is a fun-
damental prerequisite for satisfactory performances. The most
intuitive clustering approach is to group cells based on their
geographical location, antenna direction and beamwidth. This
method exposes a number of challenges. First, cells that are
located on the same mast and whose antennas point to the same
direction do not necessarily provide overlapping coverage. The
example depicted in Fig. 9 shows that also antenna tilt and
transmission power would need to be taken into account, yet,
this information is not always available. Second, it is not rare
to find co-located cells, each providing coverage for a different
cellular system (2G, 3G, and 4G). Since the areas of coverage of
each technology differ significantly in terms of size, a clustering
of 2G, 3G, and/or 4G cells into one single cluster introduces a
considerable amount of noise.

To simplify the selection of cells, we resort again to a
semi-automatic procedure: first a set of cluster candidates is
produced automatically, and then every candidate cluster is
validated manually by inspection of the corresponding time-
series of travel times. The first phase is purely data-driven: a
group of start [resp. arrival] cells are eligible to be grouped
into the same start cluster [resp. arrival cluster] whenever
the traversal time values referred to a cell in the arrival area
[resp. start area] are similar. We consider traversal times be-
tween the cell pairs x and y to be similar if their median
traversal times over a test period mtx,mty meet the condi-
tion (max(mtx,mty)/min(mtx,mty)) > 0.8. Note that the
arrival cluster for a road section does not necessarily coincide
with the start cluster for the next section. Refer again to
Fig. 8(b): Two cells c1 and c2 (or more) are grouped into a start
cluster if and only if the median traversal times to another cell
(in our example c5, i.e., c1 ⇒ c5 and c2 ⇒ c5) are similar (as
per the condition defined above). Equivalently, two cells c5 and
c6 (or more) are grouped into an “arrival cluster” if and only
if the median traversal times from another cell c1 (or from a
cluster {c1, c2}), i.e., c1 ⇒ c5 and c1 ⇒ c6, are similar.

Traversal times between start and arrival cluster are again
calculated by applying Algorithm 2: cells are replaced by
clusters, which are in turn treated as single (large) cells.

IV. CONGESTION DETECTION

The estimated travel time τest for a road segment constitutes
the input to a congestion detection algorithm, which is in charge
of raising warnings or alarms, depending on the achievable
reliability. As we have argued, it is necessary to base reliable
travel time estimation on a large enough sample set, which is
however only available at lower spatial resolution. At the same
time we aim at sufficiently high spatial and temporal accuracy.
To reach this goal, we propose a parametrized congestion
detection method on segments with two different resolutions of
LA range and sub LA range. For congestion episodes that are
detected at LA resolution, an additional inspection step (drill-
down) is foreseen to further localize congestion episodes. This
is performed by manual inspection of estimated travel times on
sub LA level. Fig. 10 gives an overview of our approach.

A. Defining Segments of Different Resolution by Cell Pairs

Road segments are defined by two types of cell pairs:

• LA boundary cell pairs consist of cells that are located at
LA boundaries: the start cell of such a cell pair is located
at the beginning of an LA (in travel direction), the arrival
cell at the beginning of the subsequent LA. There are
multiple such potential entry cells, yet, there is typically
one single pair that is able to track a significantly larger
number of devices than all other pairs (cf. the primary
LA update sequence in Fig. 11). The major unique prop-
erty of these cell pairs is their high number of terminal
encounters as they allow for observing active devices as
well as the large number of idle terminals, which typically
generate LA update events in these cells. Due to this large
number of observable terminals, no clustering is needed
for LA boundary cell pairs. The spatial granularity of the
segments enclosed by these pairs is defined by the length
of one LA. The corresponding congestion detection based
on the estimated travel times for LA boundary cell pairs
is termed LA-oriented congestion detection (CDLA).

• Non LA boundary cell pairs consist of cells or cell
clusters that enclose road segments smaller than an LA
either within the same LA or across LA borders. This
increased spatial resolution is the major gain when ob-
serving non LA boundary cell pairs. In fact, these seg-
ments are the shortest segments we can observe with
cellular data, still encountering a sufficient number of
devices (cf. Section III-A) with non-zero traversal times
(cf. Section III-B). Non LA boundary cell pairs allow to
monitor active terminals only. In case the number of ob-
servable terminals is low, cells are clustered and segments
between cell clusters are observed. The corresponding
detection based on the estimated travel times for non LA
boundary cell pairs is termed sub LA-oriented congestion
detection (CDsubLA).



Fig. 10. Congestion detection method consisting of the building blocks LA-oriented congestion detection, sub LA-oriented congestion detection, and inspection.

Fig. 11. Transitions between LA boundary cells belonging to different LAs:
Nodes represent cells, edges represent transitions between two cells in the travel
direction. The thickness of the edge is proportional to the number of transitions
(recorded in one day on a sample highway, cf. Section V).

TABLE I
CHARACTERISTICS OF CONGESTION DETECTION BASED ON LA
BOUNDARY CELL PAIRS AND NON LA BOUNDARY CELL PAIRS

Travel time estimation and therefore also congestion de-
tection show different characteristics depending on the cell
pair type, as summarized in Table I. CDLA allows to detect
congestion episodes reliably due to the large sample size of
observable road vehicles—the only limitation of CDLA is the
rather low spatial accuracy. This drawback can be compensated
by a manual inspection of shorter segments enclosed by non
LA boundary cell pairs. CDsubLA has the potential to detect
congestion episodes faster on shorter segments, however, we re-
mark that in general it is not possible to rely only on CDsubLA,
due to the small sample set size and the high relative dispersion
of traversal times hampering travel time estimation. This in
turn requires manual fine-tuning of the method to decrease the
number of wrong congestion detections. For many segments,
the problem of small sample sets can be overcome by applying
cell clustering. However, as also discussed in Section III-D, the
level of relative dispersion of the individual traversal times is
not reduced by clustering.

In the following, we describe how the congestion detection
method is parameterized for LA-oriented and sub LA-oriented
congestion detection.

B. Parameterizing Congestion Detection

At this point we anticipate how congestion is defined when
using classical approaches for road monitoring such as station-
ary or distance based traffic detectors. Although there is no
final agreement on how to define a congestion [18]–[20], we
adopt the common rule of thumb to consider the generic road
segment s congested if the current average speed drops below
half the expected speed on that segment. This means that the
travel time τs through s is larger than twice the minimum travel
time tsmin at maximum allowed speed. In general, we mark a
generic segment s as congested if

τs > tsmin × fs, (2)

with the default value fs = 2. As discussed in detail later, the
value of fs needs to be configured depending on the sensor
technology, to allow the comparison of different technologies
observing the same road. Our approach enables the investiga-
tion of large (LA resolution) and small (sub-LA resolution)
segments of the same road, whose size might differ from seg-
ments observable through traditional road monitoring systems.
Basing detection on larger segment sizes should in principle use
a smaller factor fs, as we will see for LA-oriented detection,
while fs should be larger for shorter segments, as given for sub
LA-oriented detection.

A further circumstance to consider is the “measurement
noise” introduced by the observation method itself. Different
to classical road traffic monitoring technologies, the cellular
network allows a mapping of vehicles (i.e., terminals) to road
segments only with considerable uncertainty. This is mainly
caused by the cell areas that usually do not perfectly separate
the highway into segments, and by the fact that the occurrence
of signaling events in cells does not perfectly match the point
in time the user enters the cell area physically.

As a consequence, we will set the parameter fs tailored to
the characteristics of LA-oriented and sub LA-oriented conges-
tion detection, depending on the different observable segment
lengths, sample set sizes, and resulting relative dispersion of
traversal times.

1) LA-Oriented Congestion Detection: In general, the high-
way segments that can be monitored with LA-oriented con-
gestion detection, i.e., LAs, are larger than the segments



Fig. 12. Schematic view of a congestion episode in segment s, where s is
enclosed by two distance-based sensors and located within an LA.

observed via classical road traffic monitoring based on, e.g.,
distance-based and point-based measures provided by toll
gantries and road sensors, cf. Section V-A. This has an effect
on how we configure congestion detection.

To illustrate, in Fig. 12, a congestion episode is assumed
that happens in one segment s (located within an LA) defined
by distance-based sensors. The resulting traversal time1 in this
segment is now assumed to increase by tΔ, i.e., the currently
shortest possible traversal time through segment s is given by
tsmin+tΔ, where tsmin is the minimum traversal time through
segment s. For the whole LA, the currently shortest possible
traversal time yields tLA

min+tΔ, accordingly, where tLA
min is

the minimum traversal time through the LA. Expressing this
increase for the segment by our factor fs (cf. Equation (2))
yields fs=1+(tΔ/t

s
min) in case of the road segment s, and

λ=1+(tΔ/t
LA
min) for the whole LA. With tsmin≤ tLA

min, it is
clear that λ≤fs.

As a consequence, when the minimum traversal time in
the segment s is doubled (fs = 2), and, thus, this segment is
considered congested in the classical definition, the minimum
traversal time is usually not doubled in the LA (i.e., λ < 2).
Thus, we cannot simply use the same definition used for classi-
cal road monitoring approaches, as the LA-oriented congestion
detection will then miss congestion episodes by design.

Following these considerations, we now formally introduce
the parameter λ, which allows to compensate for the segment
imbalance between technologies. Following Equation (2), we
mark an LA as congested if

τest > tLA
min × λ, (3)

where τest is the current estimation of the average travel time
(cf. Algorithm 4), and tLA

min is the minimum traversal time for
the LA. Changing the value of λ allows to adjust between
a sensitive setting (λ significantly smaller than 2) and a less
sensitive setting (λ close to 2).2 We investigate the effects of λ
in Section VI.

2) Sub LA-Oriented Congestion Detection: Here, the high-
way segments enclosed by cell pairs or pairs of cell clusters are
relatively small and differ significantly in terms of size among
themselves. We introduce again a factor to define road con-
gestion. Following Equation (2), sub LA-oriented congestion
detection marks a segment as congested if

τest > tsegmin × μ, (4)

1For segment s, the individual traversal time is defined as the difference of
the crossing times of the start and the arrival sensor, respectively.

2When using a sensitive setting, an alarm is triggered earlier than when using
an insensitive setting. As a result, a sensitive setting is prone to trigger more
false alarms, while an insensitive setting is prone to miss some congestion
episodes.

where tsegmin is the minimum traversal time in the segment de-
fined by a pair of cells/clusters. Note that these segments are
smaller than LAs and often smaller than the segments observed
by (co-located) traditional road monitoring systems, thus μ ≥
fs ≥ λ. As small segments are exposed to high variation of τest
due to the high relative dispersion of traversal times, the factor
μ here also has to compensate for this artifact in addition to the
segment size. In general, the setting of μ is a trade-off between
the likelihood of missing congestion episodes (high value of μ)
and false detections (low value of μ).

Moreover, a fixed value of μ has the drawback of using the
same level of sensitiveness for larger and smaller segments.
While this is not a problem for the large segments of the size
of an LA, it is a severe challenge for the small segments at sub
LA resolution. In general, a larger value of μ is well suited for
very short segments, but may lead to many missed congestion
episodes for longer segments. For this reason we adjust the
value of μ depending on the length of the road segment under
investigation as explained later in Section V-C.

C. Alarm Triggering System for Congestion Detection

The proposed congestion detection method can be used in
practice as a cascaded process combining the building blocks
CDLA, CDsubLA, and inspection (cf. Fig. 10).

• CDLA: LA-oriented congestion detection can be used as a
reliable, completely automated stand-alone alarm trigger-
ing system. CDLA is able to detect congestion episodes in
a timely manner, yet with a limited spatial resolution.

• CDLA+ inspection: Optionally, human inspection can be
added after an alarm was triggered based on directly
investigating the travel time estimates τest of non LA
boundary cell pairs. This “drill-down” may be imple-
mented by analyzing visual plots of estimated travel times
or speeds over various segments, which allows to further
localize the area of congestion and may provide additional
information about the temporal and spatial progress of a
congestion episode.

• CDLA + CDsubLA + inspection: At the same time, con-
gestion detection at sub LA resolution is possible, yet,
with a higher uncertainty concerning the correctness of
the outcome as congestion episodes are more likely to
be missed or falsely detected. In a practical solution, as
the detection is potentially faster for shorter segments, the
outcomes of CDsubLA can be used as a pre-alarm and
warning system. Warnings can finally result in proactive
measures taken or, after manual validation of the detected
congestion episode, may result in alarms. Manual valida-
tion can, e.g., include the analysis of travel time estimates
in neighboring segments.

V. EXPERIMENT SETUP

The evaluation of the proposed congestion detection method
is based on a real dataset from an operational cellular net-
work that includes all signaling events of the entire network
during one month. All data are available in batch for off-line
analysis, but we replay them in a stream fashion and feed
them sequentially to our processing module, i.e., in the original



TABLE II
VALIDATION DATA SETS

chronological order, to reproduce the on-line processing con-
ditions. Even without any code optimization, the processing
speed remains well above the input data rate, meaning that the
whole algorithm is capable of running in real-time. In our study,
we use pre-recorded signaling data that is aligned with the other
validation data described hereafter.

All experiments are conducted on a sample highway for
which, in addition to the mobile phone data, also a manifold
of other road monitoring data are available. This allows us to
evaluate our approach against road monitoring based on road
sensors, toll information, GPS information from a taxi fleet, and
radio broadcasts. All these “traditional” road monitoring data
sources are used collectively as ground truth in our study. We
now detail the setup of the experiment and introduce definitions
and evaluation metrics.

A. Data Sets

We make use of mobile phone signaling data as the data
source for our congestion detection algorithms as described
in Section II. For validation, four different data sets originat-
ing from real-world installations are used as summarized in
Table II. Sensor, toll and radio data were provided by the
highway operator. Taxi data were obtained directly from one of
the largest taxi fleet companies in the region. All datasets cover
a common observation period that stretches over 31 consecutive
days. While mobile cellular data are available for all days, the
validation data are only partially available due to the nature of

TABLE III
AVAILABLE DATA DURING STUDY PERIOD (JUNE 1 TO JULY 1, 2011)

sensors or temporary faults. The resulting data availability is
summarized in Table III. Toll data are missing on weekends and
holidays because vehicles with toll transponders (i.e., trucks)
are banned during weekends, sensor data are missing for some
days due to a technical problem in the recording system, and
concerning the taxi data, we do not have access to the first part
of the sample period. Radio data are available throughout the
whole period.

Different to the cellular network, the road installations for
toll and sensors data are designed to accurately measure speed
and traffic volume at given locations for specific segments, and
GPS taxi data can be easily mapped to these segments. Thus,
it is possible to use a simple rule to define congestion for the
validation data sets, based on (2): a road segment is congested
if the estimated speed of the fastest vehicles falls below half
the speed limit (equivalently: the travel time is doubled). We
mark a congestion event in our dataset if at least one validation
data source out of toll, sensors, or taxi triggers the above
condition. This way, 74 congestion events can be identified over
the sample period, and 58 of them are sent as broadcast also via



Fig. 13. Sketch of the target highway under study. The positions of LAs, toll gantries and road sensors are shown. The location of cells, secondary roads, and
other geographical elements are omitted due to non-disclosure agreement with the data providers.

radio. All events in the radio dataset are detected by at least one
of the other three validation sources.

B. Target Highway

The selected highway stretches over 36.2 km from a rural
area into the inner area of the capital of a European country.
A sketch of the target highway is given in Fig. 13. Several
secondary and lateral roads are located in the vicinity of the
monitored highway, especially in the northern part, which tra-
verses a densely populated area. In terms of network coverage,
the target highway is covered by cells assigned to four different
location areas (LAs), indicated by letters A to D: the southern
LAA is mostly located in a rural area, the northern LAC and
LAD are completely embedded in the urban area, and the
intermediate LAB maps partially to a rural area and partially
to a sub-urban area. The speed limits range from 80 km/h
in urban parts to 130 km/h in rural parts. We focus on users
traveling in the northbound direction. In the considered travel
direction, the target highway is covered by nine stationary road
sensors placed at neuralgic locations such as highway junctions
and 16 toll gantries, i.e., 15 different toll segments can be
observed by toll gantries.3 GPS taxi traces do not provide
similar segments, thus, for our comparison, GPS traces are
aligned to the segments defined by the toll gantries.

LA boundary cell pairs were selected such that each LA of
our target highway is covered by exactly one cell pair, i.e., for
each LA we selected that pair that was able to observe the
largest amount of terminals during a test period. As the sample
set of these pairs is large, no clustering is needed.

Similarly, non LA boundary cell pairs were selected such that
each segment of the highway is covered by exactly one pair.
Due to the smaller sample set of these pairs, wherever possible
we applied clustering of cells to increase the sample size for
each segment (cf. Section III-D). Among the 21 cell pairs that
were selected, for 7 cell pairs a single start and a single arrival
cell is used, for 11 cell pairs, either start or arrival cells are
clustered but not both, and for 3 cell pairs both the start and the
arrival cells are clustered. Table IV details the size of start and
arrival clusters. It can be noticed that most clusters consist of
only one single cell and no cluster includes more than four cells.

3The 15 toll segments stretch over the length of 34.5 km. The first gantry is
located at km 0.8 and the last gantry at km 35.3.

TABLE IV
SIZE DISTRIBUTION OF START AND ARRIVAL CLUSTERS OF THE 21

USED CELL PAIRS; A CLUSTER SIZE OF ONE REFERS TO A SINGLE CELL

C. Parameter Setting

The parameters λ and μ (cf. Equation (3) and (4)) are used to
adjust the sensitivity of the congestion detection algorithms and
to adapt to different segment sizes. They have been investigated
in a pre-study yielding the following settings used in our
experimental study:

• CDLA: The parameter λ is configured to range from 1.6
to 2, where λ = 1.6 refers to a very sensitive setting,
and λ = 2 refers to a less sensitive setting. For λ = 2, a
congestion episode is detected in case the estimated travel
time is doubled. This is similar to the detection rule used
for the traditional sensors. Values of λ lower than 1.6
have not been considered for the experiments due to the
increasing number of false alarms for small values of λ.
(Values of λ smaller than 1.6 result in more than four false
alarms per day.)

• CDsubLA: The parameter μ varies with the length of the
road segment under investigation (sub LA level). In our
experiments, μ is defined by the ratio between the average
minimum traversal time through a segment, which is
about 5 minutes (300 seconds) and the minimum traversal
time tsegmin through this segment, i.e., μ = 300/tsegmin. This
way, μ decreases to a more sensitive setting for long seg-
ments (tsegmin is high) and increases to a less sensitive set-
ting for shorter segments (tsegmin is low). Typical examples
are: a small segment with tsegmin = 30 [s], yielding μ = 10;
a larger segment with tsegmin = 75 [s], yielding μ = 4. This
definition of μ provides a good trade-off between false
and missed detections and the timeliness of detection.

D. Evaluation Criteria

We use the following three detection performance metrics for
evaluating our approach:

Detection success, evaluated in terms of:
• True positives: Congestion episodes that are detected by

our approach and confirmed by at least one of the vali-
dation data sources are marked as correctly identified.



Fig. 14. Estimated travel time and vehicle speed on June 30th, 2011 in the area of one LA on the target highway: (a) estimated travel time (LA-oriented) and
speed measured with road sensors, (b) toll data, and (c) taxi data. Two congestion episodes are visible: one in the morning around 08h30 and one in the afternoon
between 15h30 and 19h30, the latter was broadcast on radio at 15h33 (“heavy traffic”). (a) Cellular data (LA-oriented) vs. road sensors. (b) Toll. (c) Taxi.

• False negatives: Congestion episodes that are detected
by at least one of the validation data sources but not with
our approach are considered as false negatives (FNs).

• False positives: Congestion episodes that are detected
with our approach but are not confirmed by any other
dataset are marked as false positives (FPs).4

Timeliness of detection, measured in terms of advance
or delay in detecting a congestion episode compared to the
validation data.

Spatial accuracy, defined as the average segment
length observable with the given data.

VI. EXPERIMENTAL EVALUATION

We evaluate our congestion detection method by compar-
ing it to detection based on validation data sets provided by
traditional road monitoring systems (cf. Section V-A). The
evaluation is structured along the three building blocks of
the method (Section IV, Fig. 10). First, we evaluate solely
LA-oriented congestion detection (CDLA), which aims at pro-
viding reliable congestion detection, yet only at the resolution
of LAs. Then we show how the spatial accuracy of CDLA can
be increased by manual inspection of travel time estimates for
shorter segments at sub LA level. Finally, we analyze how the
timeliness of congestion detection can be further improved by

4As we use the validation datasets, i.e., data stemming from other sensors,
as ground truth, we note that it is possible that our approach detects a “real”
congestion episode, which can not be detected with the validation data sources.

TABLE V
DETECTION SUCCESS OF DIFFERENT TECHNOLOGIES: NUMBER OF

CORRECTLY IDENTIFIED CONGESTION EPISODES AND FALSE NEGATIVES

(FNS). FALSE POSITIVES (FPS) ARE DETAILED IN FIG. 15

including sub LA-oriented congestion detection (CDsubLA). As
an outlook for future research, we discuss the possibility to
reason about the type of incident, i.e., accident or heavy traffic,
based on our travel time estimation method.

A. LA-Oriented Congestion Detection (CDLA)

We illustrate how CDLA and the validation data sources
observe road traffic for one single day. Then, we present the
quantitative results achieved by CDLA for the one month sam-
ple period.

1) Illustrating Example: Each of the available road moni-
toring systems allows to observe road traffic, yet, with notable
differences. Fig. 14 shows traffic estimation for one single day
in one specific location area, LAD (cf. Fig. 13) in terms of
travel time for cellular data and speed for toll, sensors, and
GPS taxi data. The estimated travel time for cellular data is
shown in Fig. 14(a) as lower, black curve with corresponding



Fig. 15. Above: Detection delay of CDLA vs. congestion detection based on validation data in minutes for different values of λ. We set λ to 2 in compliance to
traditional road traffic monitoring systems, and gradually decrease λ for more sensitive settings. Negative values on the y-axis (advance) indicate that CDLA is
faster than traditional congestion detection based on the corresponding validation dataset. The “o” inside each box indicates the mean value, while “—” indicates
the median. The edges of the boxes are the 25th and 75th percentiles. The number of congestion episodes that could be compared for each dataset are found in the
legend in brackets. Below: number of false alarms (false positives, FP) for the given values of λ.

y-axis of the left side. This figure further visualizes the speed
measured at three stationary road sensors of the target highway
(upper, colored curves, right y-axis). Fig. 4(b) and (c) contain
similar information for toll and taxi data, respectively, where
yellow/red regions refer to sections and periods of lower speed.
For taxi data, the GPS traces are aligned to the toll segments.

Two congestion episodes are detected in this LA for all
datasets: a huge traffic jam in the afternoon and a less severe
one in the morning. When looking at the huge jam in the after-
noon between 15h30 and 19h30, road sensors at km 31.5 and
33.5 show a decrease in speed while the third road sensor at
35.3 is obviously not directly located in the area of the conges-
tion episode. Similarly, different sections originating from the
toll gantry installations show different congestion severity. Taxi
data provide a more staged overview of segments, which is due
to the smaller sample set.

When looking at the detection time achieved by the different
technologies on this sample day, it can be summarized that
although CDLA allows to detect congestion episodes only at the
resolution of one LA, it detects congestion episodes as timely
as the other technologies. In the following, we will investigate
whether this observation can be confirmed by our larger study.

2) Evaluation Results: We now study the potential of CDLA

quantitatively. Unless specified differently, the values refer to
the evaluation period of 31 days.

Detection success: Table V shows the congestion
episodes that are identified by each type of data source. Some
events can not be detected due to temporary unavailability of
the corresponding data (NA in Table V). The events missed by
some data source although the corresponding data are available,
are false negatives (FN). It can be seen that taxi misses 11
congestion episodes, followed by sensors that miss 7, and toll
missing 4. CDLA can identify all 74 congestion episodes. The
results are stable for all values of the congestion detection
parameter λ. Yet, the number of wrongly identified congestion
episodes (FPs) depends on λ (cf. Fig. 15).

Timeliness of detection: The achievements of CDLA in
time are visualized in Fig. 15, in comparison to all validation

sources. The upper plot of Fig. 15 shows the advance or delay
of CDLA over toll, sensors, taxi, and radio for all congestion
events detected by the respective technology in all four consid-
ered LAs for different values of λ.

CDLA is almost always faster than any validation source for
all settings of λ (the mean and median are almost always below
zero). Only for λ set to 2 or 1.95, the median of the advance
with respect to sensors is zero. As smaller values of λ indicate
a higher level of sensitivity, the timeliness of CDLA further
improves with decreasing λ. However, as indicated in the lower
plot of Fig. 15, more sensitive settings increase the number
of false positives. Setting λ to 2 or 1.95 allows to correctly
identify all 74 congestion episodes (no FNs) without producing
any falsely detected congestion episodes (no FPs). The mean
(median) advantage of LA-oriented congestion detection with
λ = 1.95 is about −3 (−4.5) minutes over toll, −3.6 (0) min-
utes over sensors, −5 (−6) minutes over taxi, and −5 (−4.5)
minutes compared to radio.

Spatial accuracy: As LAs are larger than the segments
observable by the other, dedicated road sensors, the spatial
accuracy is lower compared to these sensors. On our target
highway, the average length of an LA is about 9 km,5 while
toll gantries define 15 segments of an average length of 2.3 km,
and nine sensors segments of a length of 4.1 km. Taxi data
is aligned to toll segments. The spatial accuracy of radio
broadcasts varies, especially if the broadcast is based on reports
of registered drivers. Broadcasts that are based on information
from highway maintenance authorities have similar spatial ac-
curacy as toll and road sensor segments.

B. Drill-Down/Inspection

The area of a congestion episode detected by CDLA can be
further localized by human inspection of travel time estimates
or estimated average speed on smaller segments with sub LA

5The individual lengths of LAA to LAD are: 13 km, 10.3 km, 6.1 km, and
6.8 km, respectively.



Fig. 16. Comparison of speed measured with point-based sensory data (sensors) and speed estimated with sub LA resolution for two days at three different sensor
locations. For each sensor location (km 31.5, 33.5, and 35.3), we selected a cell pair that covers the highway segment of this sensor. All curves are smoothed with
a moving average filter using local regression. (a) June 16. (b) July 01.

resolution. This drill-down may be based on the analysis of
visual plots of estimated travel times (average speeds).

We first demonstrate that estimation of average speed on
segments at sub LA level complies to the observation by road
sensors and toll gantries. Then, we detail the increase of spatial
accuracy of detection achieved compared to CDLA.

1) Example Comparisons: To illustrate, we select two sam-
ple days with significant speed variations. First, we com-
pare cellular data with road sensors. Fig. 16 compares the
(smoothed) speed profile measured with road sensors with the
one estimated from cellular data for the corresponding sub LA
segments, for three distinct highway sections. The three road
sensors leveraged are located in one part of the target highway,
LAD (cf. Fig. 13) at a distance of about 2 km between each
other. It can be seen that the speed profile estimated from
cellular data matches very well the one measured by the road
sensors: for all congestion episodes (two in Fig. 16(a), one in
Fig. 16(b)) the cellular data captures both the drop in speed at
the beginning of the congestion episode, and the subsequent
recovery when the congestion is dissolved. The value of the
Pearson correlation coefficient between the two speed profiles
falls between 0.96 and 0.98 in the road segments affected by
congestion episodes.

Similar observations can be made by comparing speed
estimates based on cellular data with toll gantry measure-
ments. We selected the same two days as before and an ad-
ditional third day, which shows a special type of congestion
(cf. Section VI-F). Figs. 17–19 present the speed measured with
toll and the speed estimates for sub LA level segments for the
whole highway, for different sample days. The sub LA level
segment boundaries are indicated by the x-axis of the upper
plots (cellular data), the location of toll gantries are given by
the x-axis of the lower plots (toll). The y-axes show the time of
day (as trucks are banned on the highway between 10 P.M. and
6 A.M. and, therefore, toll data is not available, these times have

been omitted). Again, the speed estimates based on cellular data
comply to the speed calculated for toll. Moreover, the temporal
and spatial progress of the congestion episodes are recognizable
at a significantly higher level of details.

2) Improvement in Spatial Accuracy: With sub LA reso-
lution, the whole highway (36.2 km) can be partitioned into
21 segments with an average length of 1.7 km (ranging from
1.17 km to 3.6 km). Thus, with inspection the average spatial
resolution of CDLA, i.e., 9 km can be reduced by 81%.

In comparison, the point-based road sensors feature a mutual
distance of about 4.1 km, and the toll gantries create segments
of an average size of 2.3 km on the whole highway. We can
conclude that the resolution provided by sub LA level segments
is even higher than the one of the road installations.

C. Sub LA-Oriented Congestion Detection (CDsubLA)

Congestion detection is potentially faster for shorter seg-
ments; the outcomes of this detection can be considered as
pre-alarms or warnings. To evaluate the temporal improvement
provided by CDsubLA, we compare the detection delay of
CDsubLA with CDLA for the 74 congestion episodes identi-
fied by CDLA. Table VI shows the possible improvements in
detection delay provided by CDsubLA in relation to CDLA, for
different levels of sensitivity of CDLA expressed by λ.

CDsubLA is parametrized by μ, which can be either set
automatically for each segment (cf. Section V-C) or manually.
Manual selection of μ represents the outcome for an “ideal”
setting, i.e., manual selection yields the best possible results for
CDsubLA.6 For small values of λ, only a small percentage of

6We note that the manual selection of μ is a time consuming process, as
values of μ need to be defined manually for each segment over a considerably
long test-period. For each segment, we selected the most sensitive setting (i.e.,
smallest possible μ) that did not produce any false alarms.



Fig. 17. Speed per segment on June 16. Above: speed estimated with sub LA resolution. “A” marks a congestion episode with properties similar to a wide moving
jam (cf. Section VI-D). Below: speed measured by toll gantries—the maximum allowed speed of trucks is always 80 km/h, also for areas with higher general
speed limit (note the color bars that indicate the speed; the gray colored area in LAB and LAC indicates that no toll data is available).

Fig. 18. Speed per segment on July 1. Again, above: speed estimated with sub LA resolution. “B” marks a congestion episode with properties similar to a
synchronized flow (cf. Section VI-D). Below: speed measured by toll gantries (similar setting as in Fig. 17).



Fig. 19. Speed per segment on June 07. Again, above: speed estimated with sub LA resolution. “C” marks a congestion episode with properties similar to a wide
moving jam (cf. Section VI-D). Below: speed measured with toll (similar setting as in Fig. 17).

TABLE VI
TEMPORAL IMPROVEMENTS BY CDsubLA IN COMPARISON TO CDLA . λ IS THE LEVEL OF SENSITIVITY OF CDLA , “FRACTION” INDICATES THE
PERCENTAGE OF IMPROVED CONGESTION DETECTION (OUT OF 74), AND “ADVANCE” IS THE MEAN IMPROVEMENT OF THE DETECTION TIME

(IN SECONDS) FOR ALL 74 CONGESTION EPISODES. “MEAN” REFERS TO THE AVERAGE VALUE OF μ FOR ALL SEGMENTS IN ALL LAS

congestion episodes can be identified earlier, and the average
improvement of CDsubLA over CDLA is relatively small. For
larger values of λ, the amount of congestion episodes that can
be detected faster is larger, and also the average advance over
CDLA is significantly greater.

Recall from Section VI-A that the best trade-off between de-
tection delay and false positives can be achieved with λ = 1.95.
For λ = 1.95, an automatic selection of μ allows for improving
the detection time of 13% of all congestion episodes (10 out
of 74). On average, the detection time for all 74 congestion
episodes could be improved by 66 seconds. The average value
of μ for all 21 segments is 8.0 with a standard deviation of
5.1, which indicates a rather large spread of segment lengths.
This automatic selection of μ does not cause any false alarms,
but several congestion episodes are missed, i.e., there are many
false negatives. Out of 74 congestion episodes, 27 (36%) are
not detected with the automatic selection of μ.

When using a manual selection of μ, both the number of
congestion episodes that can be detected earlier, and also the
advance in detection time are significantly improved compared
to the automatic selection of μ. For λ = 1.95, 58% of the
congestion episodes could be detected faster (43 out of 74), and
the average detection delay for all 74 congestion episodes can
be improved by more than 5 minutes. Also the average value of
μ (4.8) as well as the standard deviation (2.2) are considerable
smaller than for the automatic selection of μ. The number of
false negatives is reduced significantly. from 36% to 4%.

Although in principle CDsubLA would allow to anticipate the
detection of congestion, relying only on CDsubLA has the draw-
back of a high number of false negatives and slower detection
for a high fraction of congestion episodes. Another drawback of
CDsubLA is that it requires more manual intervention. For this
reason we are not proposing to use CDsubLA as a stand alone
method, but only as a complement.



D. Discussion

The evaluation results document that CDLA allows for a
very robust and reliable estimation of congestion episodes, in
a timely manner. This is mainly due to the huge set of traceable
terminals, as idle terminals are included. Additionally, one
property of the observed highway counts in, namely the rather
small size of LAs in urban and near-urban regions. In particular
in rural regions, location areas are larger and, consequently,
the detection of variations in travel times becomes more dif-
ficult over longer segments and also the detection delay will
increase. From a practical perspective, the experiments confirm
that CDLA performs well and can be successfully automated
without requiring manual intervention. CDLA may be directly
employed in an autonomous alarm triggering system.

To improve the spatial resolution of CDLA that is limited
by the size of an LA, a manual inspection step, e.g., based on
visual analysis of travel times on sub LA level, may improve
the spatial accuracy, on our highway, from 9 km to 1.7 km,
which yields even a better resolution than the one provided
by traditional road monitoring. This manual step is feasible
as visual analysis is a common practice in road monitoring
systems, where for example, after a sensor has triggered an
alarm, visual inspection by using cameras takes place.

The results of CDsubLA indicate that neither the automatic
selection nor the manual selection of μ are able to fully re-
place CDLA. In both cases, the detection delay for a signif-
icant number of congestion episodes could not be improved
and some of these congestion episodes are not detected with
CDsubLA. Yet, a combined use of LA-oriented and sub LA-
oriented congestion detection together with manual inspection
provides for reliable detection, decreased delay, and a higher
spatial resolution. A congestion episode can be detected by
either CDLA or CDsubLA, although with a different level of
reliability: CDLA may be used for reliable congestion detection
while CDsubLA may be used for generating warnings.

The evaluation results are obtained on a highway section
that intersects also an urban area, which demonstrates that our
algorithm can be successfully applied to estimate travel times
and congestion episodes on highways and motorways even in
presence of a dense network of nearby secondary roads and
public transport lines. This is due to the fact that our algorithm
is designed to monitor the fastest connection between two
cell pairs, under normal conditions. Moreover, the statistical
indicators used within the algorithm remain “anchored” on the
highway data points also during congestion episodes as far as
the volume of vehicles traveling along the highway exceeds the
volume on other secondary roads, a condition that is normally
met in practical scenarios. On the downside, our algorithm can
not be used to track travel times and congestion episodes on the
secondary roads themselves.

E. Comparison With Cellphone Location Data During Calls

In this section, we answer the question whether it would be
possible to achieve the same level of detection performance by
using exclusively the cellphone location data generated during
calls. We use the term “call-related events” to refer to all
signaling events related to cellphones involved in calls: call

establishment and reception, call termination, cell handover,
and SMS. By extracting the subset of call-related events from
our dataset we obtain the equivalent of a CDR dataset for the
same observation period, and for this reason we refer to this
dataset as “CDR-like.”

We run our algorithms using now only the CDR-like dataset,
i.e., omitting all types of signaling events not related to calls
(e.g., LA updates from idle terminals). The first notable effect
is a considerable reduction of the number of tracked terminals:
for most cell pairs the number of tracked terminals is simply too
small to enable any estimation attempt. To consider the most fa-
vorable case for the CDR-like approach in our comparison, we
select the cell pair with the highest relative number of samples
available, i.e., the highest ratio of (i) cellphones that could be
tracked using only call-related events vs. (ii) cellphones that
could be tracked using the whole dataset. For the top qualified
cell pair this ratio is 19.5% on average. The cells of this
particular pair are both located in LA D and refer to the 4th and
5th cell in this LA in the considered travel direction, covering
the highway segment between km 32.4 and 33.7 (cf. any of the
Figs. 17–19). We denote this top qualified cell pair as (D4, D5).

As expected, D4 and D5 are adjacent cells and are not
located at LA boundary. We find that in particular for all LA
boundary cell pairs, the fraction of devices that can be tracked
with CDR-like data is less than 1% of those that can be tracked
when using all signaling data. Such a small number is expected,
since to track an active cellphone across an LA boundary pair
the duration of a single call would need to exceed 5 minutes, or,
alternatively, two call related events would need to be triggered
in both, the start cell and the arrival cell—a quite rare case.

In the rest of this section we evaluate our algorithm when it is
fed with CDR-like data for the selected top cell pair (D4, D5).
Fig. 20 shows a one-day example of the individual traversal
times and the estimation of expected travel time using only call-
related events. By comparing Fig. 20 with previous Fig. 7 (same
cell pair, same day, but using all signaling events),7 it can be
seen that although the number of observed probes (i.e., the
individual traversal times) is significantly lower, both conges-
tion episodes can be correctly identified also with the CDR-like
dataset. However, due to temporal variations in the call habit,
the number of probes decreases during some time intervals. For
instance, there are only very few samples between 00:00 h and
06:00 h. Concerning the timeliness of detection, we find that the
CDR-like approach suffers from an additional detection delay
of 8 and 5 minutes, respectively, for the two congestion epi-
sodes. Furthermore, the peak visible in Fig. 20 around 07:30 h
to 08:00 h does not correspond to any particular slow-down
episode in the other validation datasets. Therefore we consider
it a false positive.

We now analyze all congestion episodes on the highway
segment covered by the cell pair (D4, D5) during the whole
one-month period. Out of 22 congestion episodes occurring in
this particular segment, our algorithm was able to detect 17 with
zero false positives when fed with the complete dataset. When

7A detailed view of this particular date is given in Fig. 17 (upper right block,
highway segment 32.4–33.7 km, estimated speed for the same segment by using
all signaling events).



Fig. 20. (a): Individual traversal times and (b): estimation of expected travel time for the selected cell pair (D4,D5) using only CDR-like data. (a) Individual
traversal times as computed by Algorithm 2. (b) Estimation of expected travel time as computed by Algorithm 4.

fed with the CDR-like subset, it reported only 11 true episodes
and 4 false ones. On average, the detection delay was 8 minutes
larger with CDR-like data. Such inferior performances are due
to the reduced number of tracked individual traversal times.
Recall that these performances are achieved by the cell pair that
is top qualified for CDR-like data.

We conclude that by using only call-related data, e.g., orig-
inating from CDRs, one might be able to estimate travel times
at best during daytime and evening, but not during night.
Further, the congestion detection performance degrades along
all dimensions—false positives, false negatives, and detection
delay—when restricting to call-related data, even in the area
with the best data coverage.

F. Outlook on Future Research Direction

One interesting future research direction refers to the classi-
fication of different types of congestion events. In some cases
the variation of travel times for subsequent segments of the
highway allows for reasoning about the cause of congestion,
e.g., accidents, broken vehicles, heavy traffic, etc. This infor-
mation can be used as a framework for highway traffic research
and analysis, assisting the prediction of future expansion and
dispersion of congestion episodes.

Congestion events on highways can be delimited by two
fronts: the upstream front, where vehicles enter the congestion
zone and slow down, and the downstream front, where they
leave it and accelerate. Depending on the movement of these
fronts and other characteristics of the traffic flow, further dif-
ferentiations of traffic congestions are possible [21]. One of the
main models in traffic theory, namely the three-phase model
[5], describes three states of a highway segment:

• Free flow: No congestion is present.
• Synchronized flow: congestion with a significant “syn-

chronization” of traffic is observed (i.e., all vehicles
proceed at similar, lower speeds at all lanes) and the
downstream traffic front usually remains at the bottleneck.
Road constructions and lane reductions typically fall in
this category.

• Wide moving jam: congestion showing flow “synchroniza-
tion,” but characterized by a sharp change of vehicles

speed and both fronts may move upstream. One possible
cause of such a jam may be an accident.

The latter two situations are not mutually exclusive and may
occur simultaneously, e.g., in case of accidents occurring in
heavy traffic situations. We will refer to three real examples to
illustrate how the above states can be discerned by inspecting
the travel time estimates of segments at sub-LA resolution.

In our dataset, two examples of a wide moving jam can be
identified. The first example refers to the congestion marked
with “A” in Fig. 17; the corresponding radio message for this
congestion event was “broken vehicle.” The second exam-
ple refers to the congestion marked as “C” in Fig. 19. The
corresponding radio message for this congestion event was
“accident.” In both examples, both fronts—the upstream front
and the downstream front—move upstream, which indicates the
typical synchronization of a wide moving jam. The moving
downstream front indicates free flow in the area where the
congestion started, although the area of the upstream front is
still congested. On the contrary, the congestion marked as “B”
in Fig. 18 indicates a synchronized flow, where the downstream
traffic front remains almost at the same location, as typical
for bottlenecks. In fact, km 33 of our target highway (the
location of the downstream traffic front) is located in an area
with several junctions that often cause congestion during heavy
traffic periods.

VII. RELATED WORK

Road traffic can be monitored by means of various tech-
nologies. Traditional equipment, such as cameras, magnetic
induction loops, microwave sensors, bluetooth scanners, etc.,
enable two types of measurements:

1) Point-based, providing information about the number and
types of vehicles passing a detection zone (e.g., traffic
counts), and

2) Distance-based, providing average speed and travel time
for vehicles passing multiple detection zones.

Driven by the spread of wireless technologies, a new dynamic
paradigm emerged in the past years, where data is continuously



collected from individual vehicles traveling anywhere in the
road network, i.e., floating car data (FCD). Most FCD systems
rely on mobile devices or on-board units (OBUs) equipped
with positioning technologies that actively report the vehicle
location and speed to a central server. Here, data from each
probe is aggregated and, if the density of probe vehicles is high
enough, traffic speed and intensity are estimated. Several recent
studies focus on traffic monitoring using GPS equipped probe
vehicles [4], [6], [7], [22].

A detailed survey on latest developments of data-driven
ITS can be found in [3]. Point-based approaches suffer from
high investment and installation costs. To gain a realistic and
complete view of traffic conditions, a large quantity of sensors
must be installed. Distance-based approaches require vehicles
to be identified and tracked. Hence, they may be prone to
privacy constraints (e.g., license plate recognition) or to limited
representativeness of the probes (e.g., only vehicles equipped
with DSRC, dedicated short-range communications, toll
transponders). The main obstacle preventing FCD to substitute
traditional monitoring infrastructure is the limited representa-
tiveness when a specific and possibly biased subset of users are
monitored. This is the case if FCD is collected from taxis, which
are usually allowed to use dedicated lanes, and from trucks,
which are subject to different speed limits than cars. When FCD
is collected from privately-owned cars, as in [4], the penetration
rate becomes a limiting factor. The minimum amount of probe
vehicles that allows for an accurate traffic status estimation
has been extensively studied in literature [8], [23], [24] and
depending on the reporting interval it can vary from 1% to 5%
in highway scenarios and from 5% to 10% in urban scenarios.

Recently, the use of cellular networks to monitor road traffic
has been seen as a valid alternative to FCD, which de-facto
overcomes the requirements for penetration rate. Rather than by
OBUs or smartphone applications, data is collected passively
from the signaling that every mobile device exchanges with its
subscribed cellular network. Traffic estimation schemes using
cellular data can be based on two main approaches: call detail
record (CDR) based or passive monitoring based.

CDRs are tickets produced (for billing purposes) whenever
the user initiates or terminates a voice call, data connection or
SMS/MMS envoy. The CDR format is not standardized, and
the amount and quality of the additional information that is
contained in a CDR may differ across networks and operators.
CDRs always include the starting cell where the call/connection
was initiated and often (but not always) also the final cell where
it was terminated. They are stored in dedicated databases from
which they can be easily retrieved. For this reason CDRs have
been the first source of data for human mobility studies based
on mobile cellular data [8], [10], [11]. Recently, the use of
CDRs for characterizing human mobility has been subject of
criticisms (e.g., [25]), as their dependence on the voice call
patterns of each individual users introduce a measurement bias
in the extracted mobility.

Passive monitoring approaches are based on the observation
of the signaling messages exchanged between the mobile termi-
nals and the network. These approaches require a monitoring
infrastructure to tap the cellular network links and parse the
signaling protocols [26]. The cost of the monitoring installation,

as well as the achievable accuracy and coverage, depend heavily
on which network interfaces are monitored. Monitoring the
links within the PS-CN (as done, e.g., by [27]) is the simplest
option but allows to monitor only the terminals with an open
data connection, i.e., only a small fraction of the total terminal
population, especially on highways. Instead, by monitoring the
links between the CN and the RAN, one can observe RA/LA
changes of all users, including idle ones [12]. Our dataset is
based on this approach, and contains data from CS and PS users
from both 2G and 3G cells. Finally, a third approach can be
followed, namely monitoring at sub-cell level via power mea-
surement reports of the links within the RAN which requires
additional monitoring installations, as done, e.g., in [28] for a
limited geographic area.

The vast majority of literature in the area of traffic monitoring
via cellular networks targets non-real-time applications, such
as the extraction of traffic flow statistics and origin-destination
matrices for urban planning and traffic engineering [29]–[34].
Only few studies address the specific problem of real-time
road traffic estimation from cellular network signaling. An
early attempt is found in [35] based on double-handovers, i.e.,
pairs of cell handovers. In [36], the feasibility of using mobile
phones as traffic probes is analyzed. The authors mention that,
compared with available alternatives, mobile phones offer some
appealing characteristics such as sample size, coverage, and
cost. In [8], a CDR dataset with cell handover information
is used for measuring traffic speed and travel time across a
highway segment of 14 km for several weeks. The results
indicate a good correspondence between the cellular data and
validation data from magnetic loop detectors. Still, the study
is limited to active users and is based on an undocumented
proprietary algorithm from a commercial company. In [37], the
authors examine whether mobile phones can be used effectively
as traffic probes for point-based measurements, and propose a
model to estimate passing time in a specific reference point in
the road, starting from handover times between cells. In [38] an
algorithm is proposed, which uses low-resolution positioning
data (from cellular networks) to estimate traffic status and
speed. Yet, this approach is validated only by means of simula-
tions. In [28], the authors describe a real-time urban monitoring
platform that uses mobile cellular data for the evaluation of
statistical indexes based on monitoring the movement of mobile
equipment. This platform can also be used to estimate the traffic
intensity in specific regions of the monitored area by counting
the number of calls that were made by mobile users over some
time interval. A recent study [9] on estimating traffic flow
on roads using cellular data has introduced means to improve
the number of probes. Additional to cell handover events they
extract mobility information also from consecutive calls within
a given time period to increase the number of in-motion phones.
Since call making habits (e.g., people tend to make less calls
during night, country-specific habits) influence the number of
calls during a given time of day, this approach is limited to those
periods of the day when many calls are performed—typically
daytime hours after 8 AM, which also excludes the morning
rush-hour. Due to these limitations, the approach is based on a
parametrized model to estimate the traffic flow from the number
of calls.



We have have made several own previous contributions to the
field of road traffic estimation from cellular data. Different moni-
toring approaches are surveyed and classified in [1], while in [12]
we conducted a preliminary exploration based on real signaling
data. In [13], we have focused on the problem of traffic conges-
tion estimation. In the present work we have generalized and re-
fined this approach by introducing (a) semiautomatic algorithms
for the selection of cells (or clusters of cells) covering the road
of interest, (b) a generally valid methodology for travel time
estimation, and (c) a cascaded congestion detection process,
which identifies a congestion episode using all devices regis-
tered to the network and improves the spatial accuracy by lever-
aging the additional information provided by active devices.

VII. CONCLUSION

We have proposed a novel approach for real-time road traffic
monitoring based on the signaling traffic exchanged between
mobile devices and a mobile cellular network. Travel times
across road segments are estimated by mapping the sequence
of anonymized signaling messages for each mobile devices to
physical movement along the road. This approach has important
advantages: it does not require costly road sensor installation
and is based on data that are available 24/7. On the other hand,
leveraging the cellular network as a vehicular mobility sensor
poses several challenges.

Differently from previous studies based on CDR data, our
approach is not limited to observe the small fraction of mobile
devices actively engaged in voice calls or data connections.
Instead, we base travel time estimation also on the signaling
messages generated by idle mobile devices. This way, our ap-
proach achieves a tremendous gain in coverage and estimation
accuracy, yet, it requires advanced methods to handle a more
heterogeneous set of signaling data.

The proposed method follows a cascaded approach. In the
first part, it relies on the whole set of signaling messages,
dominated by messages from idle devices with lower spatial
accuracy, to detect the presence of abnormal situations, and
specifically congestion episodes in a timely manner. In the sec-
ond part, focus is given to the subset of signaling messages from
active devices within the region of interest, to gain additional
information and improve spatial accuracy.

We have validated our method against a set of diverse tra-
ditional data sources—namely road sensor data, toll data, taxi
floating car data, and radio broadcast messages—that collec-
tively provide the reference “ground truth.” Our study considers
one full month of data and focuses on a sample highway of
36 km spanning urban, semi-urban, and non-urban areas. With
optimal parameter tuning, our method was able to identify
all road congestion episodes without any false positive. On
average, our approach was 3 minutes faster than the traditional
road monitoring approach. Furthermore, the cascaded approach
provided a spatial granularity of about 1.7 km on average,
corresponding to 25% improvement over the smallest average
segment length of 2.3 km observable by the other legacy road
monitoring system. Finally, travel time estimates delivered by
our method can be manually inspected to acquire hints for a
possible classification of congestion episodes.
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