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ABSTRACT
We study the use of Blockchain in an Internet of Things (IoT) envi-
ronment where microservices are provided by sensors. Blockchain
assures secure and trustworthy transactions, yet it causes high load
caused by block creation on the numerous IoT nodes. To mitigate
the load, sensor nodes are clustered and block creation is restricted
to IoT cluster managers in the distributed Blockchain ledger. The
concept is exemplified by a use case describing a neighborhood of
smart homes that are equipped with environmental sensors such as
dust, temperature, and precipitation sensors. We provide an imple-
mentation of the Blockchain IoT system comprising two consensus
algorithms, Proof of Work (PoW) and Proof of Stake (PoS). By me-
ans of simulations conducted in Mininet, we derive first results
which reveal that – depending on the sensor polling period – the
service response time can be reduced by clustering. Further, clus-
tering reduces PoW conflicts to about 30% due to creating fewer
blocks.

CCS CONCEPTS
•Computingmethodologies→ Simulation evaluation; •Com-
puter systems organization → Sensor networks; • Software
and its engineering→ Distributed systems organizing prin-
ciples.

KEYWORDS
Blockchain, IoT, smart home sensors, simulation, Mininet
ACM Reference Format:
Johannes Mittendorfer and Karin Anna Hummel. 2019. Mitigating Messa-
ging and Processing Load in IoT Environments Managed by Blockchain. In
17th International Conference on Advances in Mobile Computing and Multi-
media (MoMM ’19), December 2–4, 2019, Munich, Germany. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3365921.3365949

1 INTRODUCTION
Blockchain has become popular through Bitcoin, a system for main-
taining a virtual currency based on distributed databases and tran-
sactions. As Blockchain refers to a general concept, it has been
discussed beyond the financial sector as a promising paradigm for
the energy market, smart cities and transportation, etc.
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Figure 1: Schematic view of typical environmental sensors
employed in a neighborhood of smart homes.

Due to the distributed nature of the Internet of Things (IoT),
consisting typically of a many of networked sensors, tagged things,
and machines, Blockchain is a technology of interest for managing
IoT systems. In particular cooperations of multiple IoT providers
can be well supported by Blockchain. Yet, the particularities of
the Internet of Things, namely, low-latency communication, the
large number of networked nodes with low processing power, and
transmission of small data packets, require studies on whether and
how Blockchain can be leveraged best.

In this work, we study the use of Blockchain in an IoT envi-
ronment inspired by a smart neighborhood scenario as depicted in
Figure 1. The scenario consists of smart homes with IoT devices
which provide microservices in terms of simple environmental sen-
sor measurements or aggregations. We assume that the IoT devices
are owned by different parties. The system is not centrally managed
and is open for new participants. As a consequence, the system
should self-organize concerning the advertisement of services, trus-
tworthy selection of services, and secure payment.

In this setting, our contributions are:

• We discuss how Blockchain can be employed in IoT envi-
ronments (see Section 2 and Section 3). To mitigate inherent
scaling problems of Blockchain, we employ an extension
based on clustering. We implement the flat and the cluste-
red Blockchain topology together with the major consensus
algorithms Proof of Work (PoW) and Proof of Stake (PoS) as
detailed in Section 4.

• We conduct a performance study and derive first results. In
particular, we compare the flat Blockchain topology with
a clustered topology in terms of timeliness and severity of
conflicts in Section 5.
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2 RELATEDWORK
It is widely agreed that Blockchain technology offers benefits in
IoT scenarios, in particular when the IoT sensors are shared bet-
ween different parties [12] and microservices are provided by one
or multiple sensors [11]. First, Blockchain provides a decentralized
infrastructure to coordinate the nodes in the IoT network. Second,
it provides a secure and trustworthy way to implement transacti-
ons [10]. Related work has both investigated how IoT devices can
be connected and managed using Blockchain technology and how
light-weight security mechanisms can be introduced in this frame.
In particular provenance can be provided by Blockchain by storing
the observed conditions of goods in (food) supply chains [4].

Similar to our clustering approach, related work typically fore-
sees separating the Blockchain ledger network and connections to
IoT devices. In [9], a LoRaWAN network is employed to connect
the IoT devices to a Blockchain Ethereum network through a pri-
vate gateway using smart contracts. The use of smart contracts for
microservices is described in detail in [11]. We follow this approach
by introducing advertisements and light-weight service contracts.

While assuring trust is a necessity, processing a full Blockchain
algorithm on IoT devices which typically have limited processing
power and storage capabilities is challenging. In [3], Twitter is
leveraged and transaction security is based on chains of tweets in
this novel Blockchain implementation. An approach most related to
ours but focused on security and privacy is described in [5], where
a clustered approach based on PoW is introduced for smart homes.
We extend this work by an investigation of Blockchain conflicts
and by including both PoW and PoS in our study.

3 EMPLOYING BLOCKCHAIN IN IOT
The Internet of Things typically refers to a network of tagged
objects, autonomous devices, or sensors connected through Inter-
net technologies. Application fields of IoT are manifold, such as,
transportation, health-care, smart homes, and smart offices [1].
Connecting a large number of heterogeneous things efficiently re-
quires plug’n’play mechanisms to scale. Thus, the IoT nodes have
to support service advertisement and discovery, service use, and
payment mechanisms. Finally, trust in services and transactions is
needed [7].

To assure trust in services of a decentralized IoT, Blockchain
may be adopted. The basic idea relates to an older concept, which
describes procedures to ensure the correctness of a timestamp value
cryptographically [6]. By applying encryption and using generated
hash values from previous documents to create a new hash value,
the order of events can be ensured. This procedure results in a
chain of document signatures ordered by the timestamps of crea-
tion. It is not possible to maliciously introduce information with a
fake timestamp between two blocks of the chain at a later point in
time. Typically, Blockchain systems are distributed, meaning the
blocks are generated at different sites, replicated, and a consensus
algorithm provides means to assure that the chain remains valid
although concurrent block creation takes place. In case blocks can-
not be added to the main chain, they are kept for later use and are
considered conflicts. The two mostly used consensus algorithms
are Proof of Work (PoW) and Proof of Stake (PoS).
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Figure 2: Formation of IoT clusters managed by co-located
cluster mangers that represent the respective cluster in the
Blockchain distributed system (DS).

3.1 Consensus Algorithms
PoW algorithms are based on time-consuming calculations neces-
sary to create a block which are used to slow-down the block crea-
tion process. In the form used in this work, the calculated SHA-256
hash value used to sign a block has to comprise a given number
of leading zeros (number of bits with a value of 0), expressed by
the difficulty value. The higher the difficulty, the longer it takes to
generate the hash value and thus the block. The difficulty increases
with the number of blocks created, i.e., every 2016 blocks, the num-
ber of leading zeros is incremented by one. The PoW algorithm is
used by the Bitcoin system [8].

PoS algorithms are based on the possession of a valuable that is
traded in the network, such as coins, money, or goods. Participants
who own a great amount of valuables are allowed to create more
blocks than participants owning less. The time required to execute
the calculations required for PoW can be reduced to a limited wai-
ting time that a device has to wait before a block can be created.
The more valuables a node owns, the shorter is the waiting time [2].
In our work, we use points to trade services and express the wealth
of a node.

3.2 Blockchain System Architecture
In a fully connected network, all IoT nodes create blocks and par-
ticipate in the consensus algorithms. This approach is obviously
challenged by the scale of IoT environments and by the limited
processing power and storage capabilities of IoT nodes. We will
refer to this architecture as flat Blockchain distributed system (DS).

One option to mitigate block creation and messaging load is to
introduce a hierarchy by grouping IoT nodes into clusters and to
form a clustered Blockchain DS as visualized in Figure 2 for a smart
neighborhood. The IoT nodes (typically sensors) send data to a
cluster manager (typically a co-located switch, router, or gateway)
which is the representative of the whole cluster and participates in
the Blockchain system.
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Figure 3: Windchill aggregator.

4 SYSTEM IMPLEMENTATION
The developed Blockchain client software is written in Python v3.6.
Easy handling of data structures such as lists makes Python suitable
for the implementation of a Blockchain system. In addition, the
implementation can be well integrated into real IoT hardware and
a network simulator, which we use to study the behavior of the
IoT system managed by Blockchain. On all machines, the software
modules of the client application are executed in a Docker container
to isolate the software and to increase compatibility.

4.1 Block Format
The created blocks consist of six fields and are represented in JSON
format: The index field refers to the position of the block in the
chain and is incremented sequentially for each block added. The
previous hash field contains the hash value of the preceding block.
One field contains a timestamp which refers to the creation time
of the block (synchronized clocks are assumed). The nonce field
value is a random value used by the PoW algorithm. The transaction
field consists of information concerning the trading of the service
including, e.g., the amount of points transferred. Finally, the hash
field contains an SHA-256 hash over all fields mentioned before.

For transmission, the JSON blocks are serialized. To request
blocks of a node, lists of known neighbors, and debug information,
standard HTTP GET requests are used. Through HTTP POST, a
node notifies all other connected Blockchain nodes about a newly
created block.

4.2 Software Architecture
The application separates the Blockchain specific and IoT specific
software modules. The Blockchain modules implement the creation
of blocks and chains, as well as the consensus algorithms. The IoT
modules implement transmissions to other IoT nodes. In the flat
Blockchain DS configuration, blocks are created by all IoT nodes
and distributed among all nodes in the IoT system. Differently, in the
clustered Blockchain DS configuration, Blockchain transmissions
take place between the cluster managers only. In addition, clus-
ter managers receive sensor information by querying the sensors
in the respective cluster. Service tables are used to store services
provided by IoT nodes, which further store context information
(e.g., longitude and latitude). Several other queues are used to store
pending service-related tasks such as transactions.
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Figure 4: Message flow: (a) Example topology showing three
cluster managers (C1,C2,C3), one consumer (Display), and
one service provider (Sensor); (b) Sequence of transactions
(Tx) and messages triggered by a request of the Display.

4.3 Service Provisioning
A service provider offers a service such as a sensor reading that can
be used by other devices. The aggregator fuses and aggregates data
retrieved from a service provider. Finally, a consumer uses a service.
Possible consumers are displays or database servers. Multiple roles
may be taken by one IoT node.

To get a sensor or aggregated measurement, a transaction is
started. The provider of the sensor service evaluates whether the
consumer (or aggregator) has enough points to pay for the service
and sends the value accordingly. Figure 3 shows an example of a
windchill aggregator which needs measurements from a tempera-
ture sensor and a wind sensor to calculate the windchill factor for
a consumer.

In the clustered approach, cluster managers are added. Assume
an example topology consisting of three cluster managers (C1, C2,
and C3), one consumer (Display) and one service provider (Sen-
sor) as depicted in Figure 4a. Figure 4b visualizes the process of
requesting a service by the Display, resulting in blocks created and
broadcast by the responsible cluster manager C1. In the following,
C3 queries the Sensor and broadcasts the newly created block con-
taining the sensor value. The Display retrieves the value from C1.
Note that also the cluster managerC2 receives all block information.

Services are advertised in terms of provided value and price.
In case multiple nodes offer the same service, the best service is
chosen. How to define the best service is a matter of configuration
depending on the concrete use case. For reasons of simplicity and as
we do not focus on optimizing service discovery and selection, the



MoMM ’19, December 2–4, 2019, Munich, Germany Mittendorfer and Hummel

Figure 5: HW-setup external sensor: (1) Notebook running
Mininet (with network topology snapshot), (2) Ethernet port
configured in Mininet that connects the external device, (3)
Raspberry-Pi 3 running service provider software, and (4) an
USB/UART PM10/PM2.5 real dust sensor.

current implementation uses a product to count in all parameters
in order to select the best service s as follows

s = argmax
x ∈S

1
d/D × p/P × 1/r × t/T

,

where S is the set of available services, d,p, r , t > 0. The parame-
ters are normalized by the maximum value of each parameter. The
product decreases with geographical distance d (D is the maximum
distance) and service price p (P is the maximum price). Further-
more the product increases with the system parameter reliability r
(fraction of requests that were answered in the past by this node)
and decreases with the system parameter average response time t
(T is the maximum response time).

4.4 Integration in Mininet
For studying the concept under varying network and system set-
tings, we integrate the implementation in Mininet1. Mininet is a
network simulator that allows to employ real code (kernel, switch,
application code) to create a realistic virtual network. Later, the
code can be deployed to real hardware.

Mininet is leveraged to create hosts, switches, and links by spe-
cifying the most relevant parameters of the link, while Ethernet,
IP, and TCP implementations are already available to support the
HTTP-based transmission of blocks. We further extend the virtual
network by connecting real physical devices to even more increase
realism. In the current implementation, we successfully integrated
a Raspberry Pi computer with an attached dust sensor. This device
is treated similar to the virtual IoT devices simulated in Mininet.
Figure 5 shows the hardware setup needed to integrate an external
sensor (here, a dust sensor) to Mininet.

5 EXPERIMENTS AND RESULTS
We run experiments, first, to investigate the benefits of the cluste-
ring approach in IoT settings. Second, we aim to dissect differences
in using PoW and PoS. We study the following characteristics of
the system:
1http://mininet.org/
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Figure 6: Flat and clustered topology of the Blockchain IoT
distributed system used in the experiment (the Main node
is the registrar of the network that maintains a database of
available IoT devices).

Timeliness: Timeliness is expressed as the response time, me-
asured as the accumulated time it takes to create a block,
transmit it to the destination, validate the block, create and
transmit the response, and validate the response.

Severity of conflicts: The severity is measured as the number
of conflicting blocks, i.e., blocks that cannot be appended to
the main chain; we further use the ratio of conflicting blocks
which is the number of conflicting blocks related to the
number of created blocks.

5.1 Experiment Setup
To compare the clustered with the flat distributed system architec-
ture, we use the experiment topologies depicted in Figure 6. Both
topology variants are implemented in Mininet. The used network
settings are based on Wi-Fi, all links are modeled with a network
delay of 5ms, a bandwidth of 10Mbit/s, and a loss rate of 0.02.

During one experiment, the Display device requests a new sensor
value every 20 seconds, for a time of 15 minutes. The frequency has
been selected to avoid interference with previous requests. Each
IoT node (flat topology) or cluster manager (clustered topology)
accumulates 5, 500 bytes necessary to store the chain of blocks in
one experiment. Each experiment is run 20 times.

The consensus algorithms introduced in Section 3 are used. PoW
is configured by its difficulty, i.e., 32 bits (32 leading zeros) are used
at the start of the simulation. PoS is configured by a default waiting
time of two seconds. In our example, points used by PoS are equally
distributed between the cluster managers.

5.2 Timeliness
Figures 7 and 8 depict the response times achieved by the two
different topologies employing PoS or PoW. The figures show that
the median response times of PoW (6.21 s) and PoS (6.46 s) are
similar, though the variance is much smaller for PoS. When using
the clustering approach, the response time depends on the polling
period used. We find that with a polling period of 5 s the median
response time can be reduced to 5.03 s for PoW. Similar results are
observed for PoS, not shown here.
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Figure 7: Flat Blockchain DS (PoW and PoS): Distribution of
response time visualized as box-plots (thick middle line re-
presents the median, box boundaries the 25th and 75th per-
centiles).

5.3 Severity of Conflicts
Table 1 summarizes the results concerning conflicting blocks. Clus-
tering can in particular reduce the number of conflicts for PoW to
about 30% of the conflicts occurring in the fully connected network.
With this improvement, PoW is feasible as long as the number of
clusters does not grow drastically. PoS cannot benefit from cluste-
ring with respect to the number of conflicting blocks.

Table 1: Number of conflicting blocks and fraction of con-
flicting blocks.

Flat Clustered

Number Ratio (%) Number Ratio (%)

PoW

median 9.5 1.05 3 0.33
mean 10.8 2.29 3.27 0.36
std. 6.28 0.69 2.41 0.26

PoS

mean 15 1.66 15 1.66
median 14.37 1.59 14.62 1.62
std. 7.46 0.82 7.55 0.83

6 CONCLUSIONS
We implemented a Blockchain system dedicated to an IoT environ-
ment that provides microservices. To reduce the number of conflicts
caused by concurrently creating blocks, IoT devices are clustered
and only cluster managers are allowed to fully participate in the
Blockchain system. First results derived by Mininet simulations
show that clustering can in particular reduce the number of con-
flicts for PoW to about 30% of the conflicts occurring in the fully
connected network and, thus, enables the use of PoW in IoT settings.
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Figure 8: Clustered Blockchain DS (PoW): Distribution of re-
sponse timewith varying polling intervals visualized as box-
plots (thick middle line represents the median, box bounda-
ries the 25th and 75th percentiles).

PoS is a more optimized consensus strategy and cannot reduce the
number of conflicts by clustering. Clustering may also reduce the
service response time when compared to the fully connected net-
work, yet the improvement depends on the selection of the sensor
polling frequency and comes with additional messaging necessary
to request sensor data by the cluster managers.
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