
Environmental Context Sensing for Usability Evaluation in
Mobile HCI by Means of Small Wireless Sensor Networks

Karin A. Hummel and Andrea Hess
Dep. of Distributed and Multimedia Systems

University of Vienna
{karin.hummel|andrea.hess}@univie.ac.at

Thomas Grill
Dep. of Telecooperation

Johannes Kepler University Linz
tom@tk.uni-linz.ac.at

ABSTRACT
In usability evaluations, experiments are often conducted in
closed laboratory situations to avoid disturbing influences.
Due to non-realistic usage assumptions, this approach has
important shortcomings when mobile Human Computer In-
teractions (m-HCI) have to be evaluated. Field studies allow
to perform experiments close to real-world conditions, but
potentially introduce influences caused by the environment.

In this paper, we aim at distinguishing application short-
comings from environmental disturbances which both po-
tentially cause decreased user performance. Our approach
is based on monitoring environmental conditions during the
usability experiment, such as light, acceleration, sound, tem-
perature, and humidity, and relating them to user actions.
Therefore, a mobile context-framework has been developed
based on a small Wireless Sensor Network (WSN). First re-
sults are presented that point at increased delays and er-
ror rates of user tasks under induced environmental distur-
bances. Additionally, we demonstrate the potential of envi-
ronmental monitoring for understanding user performance.

Categories and Subject Descriptors
H.1.2 [Information Systems]: Models and Principles—
User/Machine Systems

General Terms
Mobile HCI, Usability Evaluation, Wireless Sensor Network

1. INTRODUCTION & RELATED WORK
The spreading of mobile devices with increased capabili-

ties in terms of screen and camera resolution, connectivity
support ranging from 3G to WLAN and Bluetooth, and po-
sitioning support, e.g., via GPS chips on board fosters the
deployment of ever new applications and services for mo-
bile devices. These applications are typically used in mobile
scenarios but often evaluated in the laboratory to avoid en-
vironmental influences.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MoMM 2008, November 24-26, 2008, Linz, Austria.
(c) 2008 ACM 978-1-60558-269-6/08/0011 $5.00.

We focus on the demanding approach to support evalua-
tions carried out in the field which allow to provide results
more relevant to the applications’ real-world usage. Influ-
encing environmental factors can not be eliminated any more
and it becomes crucial to differentiate between user perfor-
mance effects caused by the properties of the mobile appli-
cation itself or by environmental phenomena. We approach
our aim in two steps by monitoring the environmental con-
ditions and relating them to user interactions. In a first
step, we actively induce environmental changes to evaluate
user interactions under varying – but known – environmen-
tal conditions in a laboratory. In a second step, we plan
to conduct a field study to exploit the full potential of our
approach.

In this paper, we describe the first step and present our
new approach using context sensing to capture relevant en-
vironmental phenomena for usability evaluation. A context
framework is described consisting of wireless networked sen-
sors, which is generic, i.e., the framework may be applied
to different use cases of context sensing in mobile scenarios,
but customized for mobile usability evaluations.

In the last two decades, many context frameworks have
been proposed, like the early works resulting in the context
toolkit [13] which provided abstractions to encapsulate sen-
sors using various constructs (e.g., widgets) and the multi-
sensor fusion architecture [4].

The Java Context Awareness Framework (JCAF) pre-
sented in [2] aims at creating a distributed, loosely cou-
pled, and event-based infrastructure for context-aware ap-
plications extensible during runtime by adding context ser-
vices. Its runtime architecture consists of context service
tiers, each handling context information of a particular en-
vironment, and context client tiers, which act either as a
context monitor or as an actuator that changes context. In
[8] the authors describe the Service-Oriented Context-Aware
Middleware (SOCAM), which is composed of independent
services interacting with each other to support applications
that may obtain context information by using push or pull
mechanisms. The components of the middleware, including
context providers, databases, and locating services, may be
distributed over heterogeneous networks.

Recently presented frameworks concentrate on adapta-
tions of context-aware systems during runtime, such as re-
sponses to context changes [1] and dynamic reconfigura-
tions [10]. The framework PersonisAD [1] supports person-
alized ubiquitous services by maintaining models of signif-
icant elements of the environment, e.g., people and places.
In the Autonomic Context Management System (ACoMS)

This paper is a preprint of the published work and restricted to personal use only. The copyright and all rights therein are retained by the author(s) and/or other copyright holders. The definite version of this work is published
as: Karin A. Hummel, Andrea Hess, and Thomas Grill. Environmental Context Sensing for Usability Evaluation in Mobile HCI by Means of Small Wireless Sensor Networks. In Proceedings of the 6th International Conference
on Advances in Mobile Computing and Multimedia (MoMM '08). ACM, doi=10.1145/1497185.1497248

proposed in [10], fault-tolerant provisioning of context infor-
mation is achieved by redundant context sources.

In contrast to existing frameworks, our approach is fo-
cused on the mobile use of the framework. Hence, one re-
quirement of the framework’s system architecture is the ease
of distributing sensors on several moving objects and per-
sons. The system is based on a small Wireless Sensor Net-
work (WSN) consisting of small processing units equipped
with environmental and motion sensors. The information
sink for processing and storing context data is an additional
mobile device (e.g., a battery-powered ultra-light notebook).

Mobile usability evaluations have just started to consider
influencing environmental context information. In [11], a
context-aware patient monitoring application is evaluated
by making use of cameras including a tiny camera applied
to the mobile device. This additional information is used
by pairs of evaluators to discuss each usability problem en-
countered. In [3], a study examining the effect of changes
in motion and light on the user performance is described.
Thereby, the test subjects are required to perform tasks, like
reading stories and answering multiple choice questions, on
a handheld PC as they move within the observation room.
An accelerometer is used to measure the movements carried
out with the mobile device, whereas the light level in each
scenario is recorded in terms of two fixed levels. The mea-
sures used to assess the user performance include reading
time, response time, and number of correct answers. In [12],
the authors present a study investigating the effects of move-
ment on the legibility of text displayed on mobile phones.
The set of scenarios involves walking at natural speed and
at controlled speed (on a treadmill) while the test subjects
read texts taken from newspaper articles as well as random
character strings. The influence of walking has been deter-
mined by the number of errors, reading velocity, and search
velocity in each scenario.

Our approach extends these studies by presenting a con-
text framework based on WSNs including an extended set of
sensors for acceleration, light, sound, temperature, and hu-
midity. The software architecture of the framework allows
to integrate new sensors very easily and, thus, allows to fully
implement the vision of sensing all significant environmental
phenomena [14] during usability studies in the field and to
overcome the need for restricting environmental influences.

The paper is structured as follows: Section 2 introduces
the concept of the context framework. Section 3 gives in-
sights into implementation and calibration issues. Finally,
Section 4 describes first experiments using the sensor frame-
work demonstrating the potential for usability studies.

2. CONTEXT FRAMEWORK
For use in mobile scenarios, wireless connections between

sensors and a mobile device for context processing have been
chosen based on (small) Wireless Sensor Networks (WSNs).
The framework has been designed to be generic in the sense
that it can be applied in the majority of application fields
for mobile context-aware systems.

The main hardware components of the context-sensing
system (see Figure 1) are a WSN and a mobile device (e.g.,
ultra mobile PC or small notebook) acting as a sink. The
WSN is composed of a number of distributed nodes which
are capable of collecting sensor data on environmental con-
ditions such as light intensity, temperature, humidity, and
sound levels as well as an object’s acceleration. The context-

sensing application running on the notebook processes the
data from the WSN and provides a user interface.

The communication between the sensor network and the
notebook is enabled through a gateway. The sensor nodes
transmit the gathered sensor readings in data packets us-
ing ZigBee (IEEE 802.15.4) to the gateway. The gateway is
responsible for forwarding the data packets it receives from
the network nodes to the notebook and is connected to the
notebook via a serial RS-232 interface or a USB link. The
particular system setup used is based on Crossbow MicaZ
motes [5] responsible for communicating with one another
and attached sensor boards for monitoring different environ-
mental phenomena. The distributed placement of sensors
allows to apply each sensor where it is most useful.

Figure 1: Overview of the context framework’s hard-
ware components.

The software on the motes implements basically a star
topology. Every sensor node sends its data packets contain-
ing sensor readings to the base node (node ID 0 in Figure 1),
which is programmed to transfer all packets to the note-
book via the gateway. The other nodes are programmed
to sample readings from the sensors incorporated into the
attached sensor boards and to transfer the readings in con-
figurable intervals. In order to reduce the processing load
on the gateway, we adapted the topology in such a way that
one acceleration node (node ID 2 in Figure 1) is responsi-
ble for aggregating the data collected by other acceleration
nodes within the network (in our case, one additional node)
and sending the aggregated information to the base node.

Two types of sensor boards are used, namely, Crossbow’s
MTS310 and MDA300 [6]. The MTS310 sensor board in-
corporates a thermistor, a photo resistor, a two-axis ac-
celerometer, a magnetometer, a microphone, and a sounder.
The MDA300 sensor board provides pre-calibrated tempera-
ture and humidity sensors, while the sensors on the MTS310
board need to be calibrated before they can be used for mea-
surements. Table 1 gives an overview of the sensor boards
and their sensors for each node used in the prototypical im-
plementation including sampling intervals.

3. IMPLEMENTATION ISSUES
The implementation of the WSN software is based on the

TinyOS operating system [9]. The software on each WSN
node is composed of the necessary components of TinyOS
and application-specific program code. The applications are
implemented in nesC [7], a C-based programming language
developed to enable the execution of autonomous software

ID Node Sensor Sampling
board interval

0 base connected to gateway
1 light MTS310 500ms
2 x/y accel. MTS310 100ms
3 z accel. MTS310 100ms
4 temp./hum. MDA300 4s
5 sound MTS310 100ms

Table 1: Sensor nodes of the prototype WSN.

programs on motes constrained by memory and energy lim-
itations. An important objective of nesC is the avoidance of
runtime errors by analyzing the whole program at compile-
time and by eliminating potential sources of bugs such as
dynamic memory allocation or dynamic dispatch. Thus, all
resources are known statically at compile-time.

The context-processing application running on the note-
book which serves as a sink in the WSN is implemented in
C#. This application is responsible for the processing of
context data and thus, carries out the calibration of sensor
readings. If needed, the calibration has been carried out by
adapting the readings to additional pre-calibrated reference
sensors or, for acceleration, to stationary, stable conditions
(no movement). Additionally, the sensors require a start-up
phase to stabilize (as a result of a number of experiments in-
vestigating the initial phase of data collection, we configured
the start-up phase to last for 20 minutes).

Light
The calibration of light readings is realized by mapping the
sensor results into units of measurements. The calibration
method proposed comprises two mapping equations, namely,
a linear function for lower value ranges and an exponential
function for upper value ranges. The raw ADC (analog-to-
digital converter) readings are converted directly into the fi-
nal luminance value in lux. The calibration method for light
is incorporated into the conversion algorithm of the context-
processing application as shown in the algorithm depicted in
Figure 2 (where the current configuration settings are given
as follows: a = 0.0893, b = 0.0408, c = 0.0016, d = 0.0146,
and threshold = 700).

Input: integer lightADC
Output: double luminance
IF (lightADC <= threshold)
THEN luminance = a * lightADC + b

ELSE luminance = c * e^(d * lightADC)

Figure 2: Calibration of light sensor readings.

Temperature and Humidity
The calibration experiments for temperature and humidity
showed that it is not necessary to calibrate the readings col-
lected by the MDA300 sensor board since the deviation from
our reference measurement instrument is within an accept-
able accuracy. Hence, temperature in degrees Celsius and
relative humidity are derived from the ADC values with the
two conversion formulas suggested by the manufacturer.

Sound
The sound readings are not calibrated by default due to the
characteristics of the microphone. The microphone is in-
tended to detect tones at a frequency of 4 kHz (as generated
by the sounder of the sensor board). Thus, tones at other
frequencies were detected in a reduced intensity. Although
the sensed ADC values could not be converted into decibels,
the ADC readings can be used as an indicator for sound level
changes in the environment as has been evaluated against a
calibrated sound meter.

Acceleration
Acceleration is calculated using three dimensions. Since
each accelerometer measures the acceleration for only two
directions, we arrange two sensor boards at right angle be-
tween each other to retrieve x/y/z-axis readings. Finally a
force vector is derived from the acceleration values for all
three directions.

For calibration, the sensors are not moved and are cali-
brated in a way to result in zero g. The acceleration motes
have to be placed on a horizontal surface because a tilt of the
accelerometers would also influence the readings. To per-
form this ’zero value’ calibration, the corresponding value
for each axis is derived from the mean value of the readings
collected in the last minute of the start-up phase. (Experi-
ments showed that a time period of one minute is adequate
for the calculation of the mean value. However, the length
of this period can be configured by the user.)1

4. MOBILE HCI EXPERIMENTS
Experiments have been conducted to show whether en-

vironmental influences cause changes in the user’s perfor-
mance and whether monitoring may give additional insights
into a usability experiment. Simultaneously, the experi-
ments demonstrated the robustness and usefulness of the
context framework itself for mobile HCI experiments.

To approach the investigation aims, we first have to quan-
tify user actions. Test users have to perform a sequence of
predefined tasks by interacting with an application running
on a mobile smart phone. Based on this task sequence, refer-
ence timestamps defining the optimal intended timestamps
for user interactions can be defined. The actual user inter-
actions are logged with the actual timestamps by the instru-
mented mobile application. These logs allow to relate user
interactions with the additionally recorded environmental
context.

To quantify the user’s performance, two metrics are intro-
duced making use of the recorded user logs:

Delay. The delay D is measured in seconds and defined as
D = TA−TR (where TA is the actual timestamp of the
user activity and TR is the reference timestamp). In
case D evaluates to a negative number, the user acted
faster than the expected reference activity is scheduled.
The delay is defined only for tasks solved.

Error rate. The error rate E is defined as the number of
tasks exhibiting at least one erroneous interaction user
log divided by all considered tasks. (E may be calcu-
lated for different time slots of an experiment.)

1For the mobile HCI experiments described in Section 4, we
had to perform one acceleration calibration before starting
the experiments.

4.1 Hardware Setup
The user interacted with a mobile smart phone (Qtek

S200), while the sensors were applied where they were ex-
pected to be most useful for the mobile usability evaluation.
To track the person’s movements, the acceleration sensors
were applied to the left arm of a person (right arm in case
the person is left-handed). The sound sensor was placed in
the proximity of the test person’s ear, while the light sen-
sor was placed near the smart phone to detect light shining
onto the display. Finally, temperature and humidity sen-
sors were applied to the right arm (left, for left-handed per-
sons). Figure 3 shows a test person and the used wireless
networked sensors. For reproducibility purpose, all scenes
were recorded by a camera.

Figure 3: A participant equipped with sensor nodes.

4.2 Usability Study Setup
For first evaluations, we actively changed environmental

conditions to be able to observe the user interactions under
similar conditions for all test persons and experimental runs.
As a consequence, we conducted the experiments indoors in
a laboratory-like environment.2 We explicitly invoked envi-
ronmental phenomena according to an environmental time
schedule lasting for five minutes. While environmental con-
ditions were changed, the user interacted with the mobile
smart phone according to tasks given by a continuous video
projection in the room.

We conducted three experimental runs:

Sitting. In this stationary experimental run, the user is sit-
ting on a table performing the given tasks.

Moving 1 and 2. These experimental runs differ only in
the kind of tasks to be solved (as given by different
video projections). In both cases, the user is forced
to change place while environmental conditions are
changed according to the strict environmental time
schedule. The schedule consists of subsequent time
slots of 30s dedicated to: extensive moving (Accel-
eration), increased light level induced by an reflec-
tor (Light), increased sound level by playing different
noisy sound files (Sound), and decreased temperature
and changed humidity by opening a window nearby

2The mobile context-framework has also been used in out-
door experiments and proven to be usable in these experi-
ments.

(Temperature/Humidity). Times where no environ-
mental changes are induced are titled w/o.

4.3 Results
The following results have been derived from aggregating

the performance of seven test persons each performing three
experimental runs. The context framework itself worked
correctly and stored about 45 MB of sensor data.

Figures 4 and 5 show the aggregated performance results
for all seven participants for the time slots corresponding
to the different environmental changes in experiment runs
Moving 1 and Moving 2 – aggregated to Moving. (The time
slots on the x-axis have been named according to the envi-
ronmental changes.) The Sitting Av. value represents the
average performance of users interacting with the mobile ap-
plication during the whole experiment where environmental
conditions have not been changed (scenario Sitting).

Figure 4: Average error rate in the moving scenar-
ios compared to the mean average error rate in the
sitting scenario over all seven participants.

Figure 4 (detailing the average error rate) and Figure 5
(detailing the average delay for the different induced envi-
ronmental changes) show that environmental disturbances
indeed lead to decreased user performance. The error rates
are higher ranging from about 0.18 to 0.45 than the average
error rate of about 0.05 in the sitting scenario. Similarly,
the delays are higher ranging from 3.34s to 7.02s than the
average “delay” of about -0.92s in the sitting use case.

Although Acceleration-only is differentiated explicitly, the
test persons were also slightly moving in the other time slots
including Temperature/Humidity and w/o which explains
the unexpected high values for these time slots. It further
has to be said that the variance of user performances both
for the error rate and the delay were high (e.g., the error
rate ranged from 0 to 1 for the test persons in some periods
of similar environmental disturbances). Thus, with just this
sample of seven persons it is not possible to derive a rank-
ing of most disturbing environmental factors and the results
have to be considered to be preliminary.

Figure 6 shows an example how the sensor values can be
used to reason about the causes of a user’s performance. A
30 second extract (second 20 to 50) of a person’s sensor trace
during one moving experiment has been chosen depicting
two errors and one significant delay of two seconds. The us-
ability evaluator (or evaluation tool) may now use this infor-
mation – here graphically – to see that for both delay and er-
rors given no noise, light, or temperature/humidity changes
in the environment happened, but an increased movement

Figure 5: Average delay (in seconds) in the moving
scenarios compared to the mean average delay in the
sitting scenario over all seven participants.

activity. Automated usability evaluation tools may now clas-
sify these two errors and the delay as possibly caused (or at
least influenced) by movement. It is up to future work to
present methods to derive environmental patterns which are
likely to decrease user performance.

Figure 6: Example demonstrating how to use sensor
values to point at possible reasons for errors and
delays (delays given in seconds).

5. CONCLUSIONS AND FUTURE WORK
We have presented a mobile context-framework based on

small Wireless Sensor Networks (WSNs) and its application
to mobile usability evaluation. The main benefits of the
presented solution are its support for mobile environments
where sensors may be applied easily to different objects (or
at different places) and its modular software architecture
including a calibration module.

User experiments have been conducted in a laboratory
with seven test persons where we changed different envi-
ronmental conditions. First results showed that the perfor-

mance of the test persons on the average decreased in terms
of higher error rates and delays while performing given tasks.
We further demonstrated, how the gathered sensor data can
be used to reason about causes of delays and errors. In fu-
ture work we plan to extend these preliminary results by
comprehensive field study experiments and by deriving en-
vironmental patterns that are likely disturbing a user.

6. REFERENCES
[1] M. Assad, D. Carmichael, J.Kay, and B. Kummerfeld.

PersonisAD: Distributed, Active, Scrutable Model
Framework for Context-Aware Services. In Pervasive
Computing 2007, pages 55–72, 2007.

[2] J. Bardram. The Java Context Awareness Framework
(JCAF) - A Service Infrastructure and Programming
Framework for Context-Aware Applications. In
Pervasive Computing 2005, pages 98–115, 2005.

[3] L. Barnard, J. Yi, J. Jacko, and A. Sears. Capturing
the Effects of Context on Human Performance in
Mobile Computing Systems. Personal and Ubiquitous
Computing, 11(2):81–96, 2007.

[4] D. Chen, A. Schmidt, and H.-W. Gellersen. An
Architecture for Multi-Sensor Fusion in Mobile
Environments. In Int. Conf. on Information Fusion,
pages 861–868, 1999.

[5] Crossbow Technology Incorporated. MPR-MIB Users
Manual, June 2006.

[6] Crossbow Technology Incorporated. MTS/MDA
Sensor Board Users Manual, June 2006.

[7] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC Language: A Holistic
Approach to Networked Embedded Systems. In ACM
SIGPLAN 2003 Conf. on Programming Language
Design and Implementation, pages 1–11, 2003.

[8] T. Gu, H. Pung, and D. Zhang. A Service-Oriented
Middleware for Building Context-Aware Services.
Journal of Network and Computer Applications,
28(1):1–18, 2005.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System Architecture Directions for
Networked Sensors. ACM SIGPLAN Notices,
35(11):93–104, 2000.

[10] P. Hu, J. Indulska, and R. Robinson. An Autonomic
Context Management System for Pervasive
Computing. In Pervasive 2008, pages 213–223, 2008.

[11] J. Kjeldskov and M. Skov. Exploring
Context-Awareness for Ubiquitous Computing in the
Healthcare Domain. Personal Ubiquitous Computing,
11(7):549–562, 2007.

[12] T. Mustonen, M. Olkkonen, and J. Hakkinen.
Examining Mobile Phone Text Legibility While
Walking. In CHI’04 Extended Abstracts on Human
Factors in Computing Systems, pages 1243–1246, 2004.

[13] D. Salber, A. Dey, and G. Abowd. The Context
Toolkit: Aiding the Development of Context-Enabled
Applications. In SIGCHI Conf. on Human Factors in
Computing Systems, pages 434–441, 1999.

[14] B. Thurnher, T. Grill, K. Hummel, and R. Weigl.
Exploiting Context-Awareness for Usability
Evaluation in Mobile HCI. In uDAY IV, pages
109–113. Pabst Science Publisher, 2006.

